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ABSTRACT 

KUDENOV, PETER ALEXANDER. Software Engineering as a Problem-Oriented 

Sociotechnical Regime. (Under the direction of Drs. David Rieder and Helen Burgess). 

 

This project describes software engineering as a problem-oriented sociotechnical regime, 

developing a Deleuze and Guattarian theoretical framework to explain how software is the 

culmination of a progressive series of problematic encounters between axiomatics—which are 

the formalized practices which design, implement, test, and maintain software—and the states of 

affairs for which, and in which, the software is produced. The purpose of this project, and its use 

of Deleuze and Guattarian theory, is to connect software as a type of media to the practices 

which produce it, thereby concretizing the reasoning behind its concepts and implementation in 

the world at large, essentially the transition from the virtual to the actual. This was done in 

response to media studies’ scholarship’s lack of engagement with the patterns and practices of 

software’s implementations—the work and the ways software engineers solve problems—to 

connect a crucially important media technology to the practices and perspectives that design and 

implement it. This dissertation has three major parts. The first part defines the problem-oriented 

sociotechnical regime, laying the theoretical framework for the rest of the dissertation. It 

describes how social and technical factors and resources relate to an orienting problematic, 

which is the combination of a problem and its conditions in a Deleuzian sense. Regimes 

represents a type of stable identity that has cohered around a problematic and the axiomatics 

designed to implement solutions to the problem related to its conditions. The second part of this 

dissertation examines the impetus for ‘software engineering’ to exist, namely as a response to the 

‘software crisis’ of the 1950s and 60s, by looking at the history of early software development, 

the inception of Computer Science, managerial practices, and the convening of the 1968 NATO 

Conference on Software Engineering. Software engineering—still a polemical combination of 
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terms—was intended to standardize the implementation of software using engineering concepts 

and practices, thereby making it more predictable and reliable. It is related to but distinct from 

Computer Science and managerial practices. The third part of this dissertation examines the 

consequences of communicating with a sociotechnical regime when such communication crosses 

signifying and asignifying boundaries, a process referred to here as transduction. Software is a 

diagrammatic, asignifying computational product that must interact with a signifying, human 

world. Its design requires that signifying values are translated into asignifying diagrammatical 

processes. Using Guattarian mixed semiotics, transduction describes part of the issue of making 

reliable software—in essence, the problem of communicating problems—when those 

understandings shed meanings as they are transduced from signifying domains into asignifying 

domains, and vice versa. Taken together, this project describes software engineering as a 

sociotechnical regime, which has acquired its own identity and axiomatics, while providing a 

basis for interpreting ‘software’ and the practices that instantiate it for future media studies’ 

scholarship. 
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Chapter 1: Software Engineering as a Problem-Oriented Sociotechnical Regime 

This dissertation project is a direct response to an issue brought forth by Wendy Chun 

(2011), who argued that media studies’ engagements with software made it more ephemeral and 

therefore less knowable, causing software to become a fetishistic medium. In response, this 

project seeks to de-fetishize source code, programming, and software by looking broadly at 

software engineering through a Deleuze and Guattarian framework. De-fetishizing software has 

significant implications for media theorists but has seemingly not been picked up as an area of 

study by humanist scholars. Chun argues that attempts to study source code that try “to map and 

know the workings of [a] machine” as a basis for understanding it and theorizing it as a media 

technology tend toward a type of reductionism that equates source code to action, i.e., as a 

“magical entity” and “source of causality” (p. 51). To combat this, Chun asserts that to “make 

our computers more productively spectral” scholars must embrace “the unexpected possibilities 

of source code” by treating it as a fetish (p. 20), which “allows one to visualize what is 

unknown” by “[substituting] images for causes” (pp. 50-51). Chun argues against the belief that 

source code is what it is, against the position Ellen Ullman took, i.e., that source code’s “entire 

meaning is its function” (Ellen qtd in Chun), because it can be read by many human and 

nonhuman agents and understood in multiple ways. Consequently, due to its readability and 

ability to convey multiple types of information, source code is a medium in the “full sense of the 

word,” because “it channels the ghost that we imagine runs the machine” (pp. 49-50): “the 

power” of (or behind) source code, she asserts, “lies elsewhere … in social and machinic 

relations” (emphasis added, p. 51). This is true, in the sense that software does not emerge into 

existence without some impetus for that existence. Software is designed into existence. 

Arguments about what software is need to incorporate an understanding of how software is 
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made, and consequently, what software engineering does; doing so will de-fetishize software, 

allowing it to become knowable and seeable in ways media studies has typically not integrated 

into its theoretical milieus. As evidenced later in this chapter, media theorists studying software 

have generally not moved past the primacy of code and the concept of the programmer, even in 

automated and machine learning systems, and have not given an account of the ontological and 

epistemological values that broadly deploy and execute software. My argument is that source 

code and programming are but one process in a set of processes that produces software, and that 

looking past the programmer and source code to the practices of software engineering integrates 

the world of social and machinic relations to which Chun alluded into future definitions of 

software: programming is but one process of many that brings source code into existence. 

Software is not a ghostly medium if its exigencies and ontologies of design, management, and 

funding are incorporated into its definition. So, while Chun (2011) does look at certain types of 

social and machinic relations in Programmed Visions, the reasoning for the processes leading to 

the ‘software’ she and others use, like Alexander Galloway (2012) in Interface Effect, are largely 

taken for granted in the larger and ongoing discussion about power and its consequences. 

Software engineering is the field of praxis that produces most modern software, and 

understanding it is a way to integrate knowledge that de-emphasizes the ways of knowing and 

ontological processes of proposal writing, requirements gathering, specification validation, 

development, testing, and documentation that lead to software and source code as mediating 

things in the world. Rather than focus on power per se, I examine how and why software is 

produced in the way it is produced by looking at how the discipline of software solves problems 

as a way to engage media theorists with an aspect of software media that is underdeveloped. 
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The way to account for the reasoning of software, the ‘why’ of the ‘how’ software is 

made, is to set aside the concept of power and instead examine the problematics—which to 

Deleuze (1994) are the combination of a problem with its conditions—leading to the production 

of the disciplines themselves which are dedicated to solving problems computationally, e.g., 

those of Computer Science and Software Engineering. What produces the identity of a software 

engineer, what does it mean to ‘engineer’ software, and why is the conjunction of ‘software’ 

with ‘engineer’ both polemical and desirable? An analysis of problematics is where Deleuze and 

Guattari’s independent and conjunctive works bloom, with its emphasis on ontologies of 

becoming and of rhizomatic associations stemming from events, which I mobilize to produce an 

analytical framework capable of accounting for why software engineers produce software in 

ways that they do. To this end, this dissertation develops the concept of the problem-oriented 

sociotechnical regime to frame a historical analysis of the factors leading to the inception and 

evolution of software engineering, which then examines the difficulties inherent to the mixed 

semiotic interactions of transducing problems into software.  

 

There Is No Software? No: There Are No Typical Software Projects 

Before turning to the concept of the sociotechnical regime, it is necessary to describe how 

software is generally produced. Considering the processes of its production refutes narratives 

that software is ephemeral or unknowable. It must be emphasized that there are no ‘typical’ 

software development projects, and despite programming and source code being emblematic of 

software development, they represent, as Brooks (1995) argued, about 1/6th of the work in 

bringing software development to fruition in the form of a deployable, usable product. Brooks 

oversaw the development of IBM’s OS/360 in the 1960s, which became one of the most 



www.manaraa.com

  4 

 

expensive software development efforts at the time and would come to realize that software 

development is confounding in many ways. While one might assume that if a product were 

running behind, adding more developers would speed up the development process, Brooks found 

it held the project up in several crucial ways. At the time, more developers meant, blithely, more 

sick days, more scheduling headaches, less effective communication among the team members, 

and slower overall progress; counter-intuitively, fewer developers produced software faster. 

From a ‘programming’ perspective—the extent to which a developer just writes code in their 

day-to-day job—Brooks' ratio arguably changes depending on the kind of Software Development 

Life Cycle (SDLC) their organization adopts, and the level of seniority and experience they have. 

Junior developers tend to do less planning and design work, while senior developers and 

architects might regularly meet with stakeholders, write requirements documents, map out 

designs, and assign tasks and prioritize work for junior team members. Brooks’ ratio shows that 

software is more than its programming and source code and is rather an aggregation of efforts.  

Software development is far more than programming and compiling source code cloned 

from git repositories. While Brooks found that planning, documentation, testing, and 

maintenance took more time than implementation work, the most valuable insight is the 

realization that software development is fundamentally communicative across human and 

technical domains.  Planning ideally takes place prior to implementation, and includes tasks like 

needs assessments, requirements gathering, and design work, which are all processes that are 

performed to such an extent that the problem someone is having is understood well enough that a 

tenable solution can be found. During planning, project managers, architects, and senior 

developers talk to clients and stakeholders, turning the information they gather into 

documentation like design documents or user stories, so that the solution becomes a kind of 
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anticipated outcome. Those requirements are then divided up and communicated with team 

members—like artists and programmers—who take them and start turning them into something 

that performs work. User interfaces are created and connected programmatically to the business 

logic they are designed to use, and the work is managed over time by senior developers and 

project managers. Ongoing work is checked against the design documents to ensure conformity, 

and meetings are held when issues arise that slows the work down to determine if the tasks can 

be divided and completed by other team members. Testing can mean several things in a software 

development effort, but generally it is a means to determine if the solution meets the 

requirements stated at the outset: does the software do what the customer wants it to do? 

Anytime software fails to meet its requirements, implementations are fixed, possibly leading to 

new programming work, which then elicits more testing. A major caveat with bug fixing is the 

additional testing (and sometimes, documentation) it requires: a bug fix might introduce a 

regression, which occurs when the fix for one issue causes a new issue; a fix can break other 

parts of an application. Software enters a ‘maintenance mode’ after it has been delivered to a 

customer, and many bugs are often fixed after a product has entered the market. Maintenance 

modes can often last years, if not longer, depending on the needs of the customer, the nature of 

the software, and the budget allocated for its lifecycle.   

While programming is how software is ‘written,’ software cannot be planned, tested, or 

maintained without multiple layers of communication: many words are spoken and written to 

facilitate a software project. As Brooks noted, the implementation phase of an application, while 

important, is one part of a larger set of processes that are largely driven by people talking to each 

other. This communicative impetus is part of the reason why software, popularly, is never 

finished; unlike a corporeal structure like a bicycle frame, which can only be modified so much 
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before it becomes ‘not-bicycle frame’ (or perhaps, ‘was-bicycle frame’), software can be 

modified and scoured in myriad ways while still maintaining cohesion because improvements 

can always be integrated and bugs can always be fixed as long as they are brought to the 

attention of those charged with maintaining it. For example, Microsoft recently increased the 

number of Fiber Local Storage slots in the Windows 10 Kernel which is notable because the 

feature lives in the code the kernel uses to manage threading, which allows many processes to 

run simultaneously on a computer. As the change touches virtually every application Windows 

runs, it will require long-term testing to verify that it works properly without unduly affecting 

other parts of the Windows Operating System (OS). Throughout it all, Microsoft has 

communicated with stakeholders, like its developers, its testers and Windows Insiders’ members, 

and customers potentially affected by (and benefiting from) the changes. It was implemented 

when a program manager in Microsoft made the case for the change to the Kernel team, 

attracting enough supporters to the argument for a risky change. He made the case because of the 

feedback he received from professional audio producers and musicians on a pro-audio forum 

because the need existed, and it was an issue that would enable Windows to be used far into the 

future. In a real sense, the communication around software and about it enables it to be 

produced.   

The areas Brooks’ identified—planning, implementation, testing, and maintenance—have 

been codified as SDLCs, which have emerged over the years since IBM’s OS/360 debacle to 

operationally model idealized development efforts. SDLCs are an attempt to reduce human 

fallibilities by standardizing the ways software is made by addressing changing development 

environments, technologies, and requirements. The Waterfall SDLC, forwarded by Winston W. 

Royce in a piece published in 1970, is commonly considered to be the first models to become 
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widely adopted by industry after it was standardized by the Department of Defense in 1985 

(DOD, “Defense Systems Software Development,” DOD-STD-2167A). Waterfall development 

efforts flow from top-to-bottom (like a waterfall), such that a development effort begins with a 

‘requirements’ phase and proceeds, in turn through design, implementation, verification, and 

maintenance phases. Waterfall works well for smaller projects but leads to problems when 

changes to specifications are introduced mid-course, because the model assumes that all the 

requirements have been gathered and accounted during a project’s inception. Brooks’ experience 

shows—and as Chapter 3 will detail—that large projects have many unforeseen requirements. 

Contemporary SDLCs still include Brooks’ phases but change the way they operate. Agile or 

Incremental SDLCs tend to integrate documentation and testing into their implementation phase 

with ideas like self-documenting code and iterative development to, ideally, make them highly 

responsive to requirements changes. In Agile, requirements are revisited repeatedly. Scott W. 

Ambler (2018) explains that “Agilists [sic] take an evolutionary, iterative and incremental, 

approach to development,” because “requirements are identified throughout most of [a] project.” 

The work to implement software relies on concurrent or successive efforts to plan, test, and 

maintain the product.  

Every software development effort is atypical in its own way because software is far 

more than its programming and source code. The source code one reads only offers a small 

glimpse of how the software emerges, ontologically, into becoming. A program represents an 

aggregation of efforts in human and technical domains. The fascinating aspect of software is that 

it is the crux of a natural rhizome, in a Deleuze and Guattarian sense, because each effort is 

atypical, flowing from requirements and problems that are often incompletely grasped. Where 

SDLCs like Waterfall or Agile act as models for development efforts to follow in the hopes of 



www.manaraa.com

  8 

 

increasing the predictability and reliability of the results (topics discussed in chapters 3 and 4), 

the reality is that models are abstractions and the reality of the day-to-day effort to engineer 

software is full of sick days, hurt feelings, broken tools, bad routers, power struggles, and 

miscommunications. Software is a representation of a set of processes which, through aggregated 

efforts, culminate in a process that works on a problem computationally, and each ‘becoming’ is 

a unique negotiation of human and technical communication.  

 

On Sociotechnical Regimes 

To define software engineering as a problem-oriented sociotechnical regime and in turn 

expand the scholarly focus from source code or software toward the social and machinic 

relations in the processes used to it, this dissertation makes three supporting arguments. In 

Chapter 2, “Problem-Oriented Sociotechnical Regimes,” I develop the idea of a sociotechnical 

regime to describe how problems organize and coalesce human and non-human agents into sets 

of technical and social relations and practices that form relatively stable recursive values, 

identities, and products. From a Deleuze and Guattarian perspective, the concept of the 

sociotechnical regime addresses the aspect of Chun’s (2011) argument about ‘sourcery’ and its 

focus on ‘source code’ by allowing scholarly focus to pivot toward the broad collection of social 

and machinic processes leading to the production of software. For their recognition of the role 

problems play in materialist ‘becomings’ as open-ended processes, I elaborate on concepts from 

Deleuze and Guattari’s individual and collaborative work to create the framework of a 

sociotechnical regime, which allows me to describe ‘software engineering’ as a distinct, but co-

dependent praxis of Computer Science and managerial considerations. A problem-oriented 

sociotechnical regime has a peculiar orientation to the world, and the idea is important because it 
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allows one to build context around and demystify the solutions they produce, the practices and 

the products of those practices derived from estimable and reproduceable axiomatics by a 

regime. Sociotechnical regimes are part of my response to Chun’s concern about the fetishization 

of code by placing ‘source code’ in context with the practices and actors involved in its creation. 

Software is less about its ghostly visage and more about the processes that created it. 

Technological development is iterative and additive in nature, and sociotechnical regimes do not 

spontaneously emerge into the world. Problems become visible as soon as the right techniques 

and processes exist to expose them within their conditions. Therefore, sociotechnical regimes are 

organized material responses to a problematic (a problem and its conditions, according to 

Deleuze) that seek to solve that problem while negotiating on-going changes to its conditions. 

Sociotechnical regimes, like Computer Science or managerial praxis generally, persist through 

time as they iterate over their solutions to the problems embedded in their relative conditions. 

The concept allows a definition of software engineering to have its own identity as a discipline 

while also encapsulating practices and techniques evident in other regimes. 

After the concept of the sociotechnical regime is adequately described in Chapter 2, it 

becomes possible in Chapter 3, ‘Software Engineering as Sociotechnical Regime,’ to look at the 

historical factors and problematics leading to the development of software engineering as a 

distinct regime from the neighboring communities of practice of Computer Science and 

managerial praxis. The historical factors point to how software engineering became a 

sociotechnical regime comprising a distinct expression of a social and machinic epistemology 

that is principally unstable in that it resides in a constant state of tension between Computer 

Science and corporatized managerial praxis. Mapping ‘software engineering’ as a sociotechnical 

regime incorporates many patterns and practices that allow source code to be demystified and 
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revalued. The historical evidence in the organization of software engineering will show that code 

and coding are one of many practices and products in the work surrounding computation, and 

while important, programming and source code are always an expression of a problematic, which 

is a problem and its conditions. The history of software engineering reveals more about the 

nature of software when the practices used to create and deploy it are shown to connect to 

practices inherent in Computer Science and managerial praxis. Software is theory and practice 

and is an immanent material expression of social and machinic relations; it maintains its 

‘ghostly’ qualities only when the broad array of social and machinic relations leading to its 

creation are uninterrogated.  

Chapter 4, ‘Unstable Intersections,’ completes the circuit of the problem-oriented 

sociotechnical framework by exploring and defining transduction, which I define as the 

interfacing operation a sociotechnical regime uses to relate to the world and itself. The chapter 

argues for an interpretation of Guattari’s concept of mixed semiotics to show how software 

engineering, a sociotechnical regime premised on a principally asignifying plane of reference 

comprised of functions and propositions, relates to the signifying content of human expressions. 

The chapter performs three tasks: it defines Guattari’s concept of asignification by locating its 

role in enunciative acts, e.g., the mixed semiotics of assemblages of enunciation, and explores its 

relationships to the works of McLuhan and Kittler to show how his orientation toward 

diagrammatism positions him as an ideal basis for posthumanist inquiry; it defines the concept of 

transduction as it regards the actual movement of values and meaning into and out of asignifying 

and signifying processes and therefore into and out of sociotechnical regimes; and it clarifies the 

role of signification in a sociotechnical regime by elucidating the relationship a signifier has with 

the boundaries between diagrammatic and signifying processes. From these moves, I will explain 
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how transduction—the loss or addition of signification to a process—shapes a problem-oriented 

regime’s material outcomes and encounters. Transduction and mixed semiotics are a way to 

account for the unreliability of software and the unpredictability of its implementation and 

delivery by elucidating what happens when, reciprocally and bidirectionally, diagrammatic 

processes are imposed on signifying interpretations and interactions. This, in turn, allows one to 

understanding why a sociotechnical regime’s problem-orientation explains more about its 

relation to the world and itself, and why, specifically sourcery must be dispelled and why future 

media studies scholarship should incorporate thorough understandings of software engineering.  

The significance of a Deleuze and Guattarian framework for media studies, of 

sociotechnical regimes to analyze and describe software engineering, allows a simplification of 

terms such that intersections between philosophical concepts—as proposed in media studies 

scholarship—and scientific functions can be analyzed in the contexts in which they operate. Just 

as the sciences should not attempt to redefine philosophical concepts, philosophical projects 

should not attempt to overcode scientific functions. Sociotechnical regimes offer a Deleuze and 

Guattarian framework for analyzing the intersections between a discipline, like software 

engineering, and the world in which it operates, produces, and mediates. The significant 

contribution this framework makes is to narrow the distance between media studies scholarship 

and the engineering practices and outcomes they purport to study. The gap is evident when 

evaluating current definitions of ‘software,’ ‘programming,’ and ‘source code.’ 

This dissertation is an attempt to reboot parts of the media studies’ scholarship associated 

with software. Using Deleuze and Guattarian methods to incorporate and elucidate the 

definitions and practices of software engineering borne of industry and STEM, the gap between 

practical definitions of software and philosophical ones can narrow in productive and surprising 



www.manaraa.com

  12 

 

ways. They believed that “philosophical concepts act no more in the constitution of scientific 

functions than do functions in the constitution of concepts,” which means that the work of 

philosophy in evaluating scientific functions resides outside of a definitive, denotative domain 

(Deleuze & Guattari, 1994, p. 161). The issue with media studies scholarship about software is 

that it has unnecessarily attempted to redefine terms: Deleuze and Guattari viewed philosophical 

concepts as an event or virtuality that exists and affects beings whether they like it or not, but 

crucially recognized the actualization of things within a state of affairs as being governed by 

scientific propositions and functions. This distinction of philosophy from science, that the 

“actualization and counter-effectuation are not two segments of the same line but rather different 

lines” (p. 160), provides a basis for looking for intersections between a virtual concept and an 

actual function. So, rather than treating software as invisible, or fetishizing it, which leads to 

narratives of its existence and functions in our lives as mysterious, or of media studies’ 

investigations into its nature which offer to ‘pull back the veil’ to only further redefine it, it may 

be more productive to consider it as always visible by working with its existing and science-

oriented definitions. Tracing the connections between things—their intersections—describes 

their becomings without the need the redefine their terms.  

 

On Software and Software Engineering, Programming, and Source Code 

No doubt states of affairs that are too dense are absorbed, counter-effectuated by the 

event, but we find only allusions to them on the plane of immanence and in the event. 

The two lines are therefore inseparable but independent, each complete in itself: it is like 

the envelopes of the two very different planes. Philosophy can speak of science only by 

allusion, and science can speak of philosophy only as of a cloud. If the two lines are 
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inseparable it is in their respective sufficiency, and philosophical concepts act no more in 

the constitution of scientific functions than do functions in the constitution of concepts. It 

is in their full maturity, and not in the process of their constitution, that concepts and 

functions necessarily intersect, each being created only by their specific means. (Deleuze 

& Guattari, 1994, p. 161) 

 

Before diving into Deleuze and Guattari’s (1994) epigraph to this section, we need to 

touch upon a connection in media studies scholarship that speaks to a theme of intersection 

between philosophy and science. Bernhard Siegert described media studies’ scholarship as 

operating in a Kittlerian mode for the last twenty-years during the closing remarks of the 2018 

Princeton Weimar Summer School for Media Studies. He stated that while it had worked well, 

the future of media studies required a broadening of the approaches used to study cultural 

techniques (incidentally, the research question for the Princeton Weimar 2019 session is, “What 

Happens When Practices Become Algorithmic Technologies?”). Siegert lamented that the study 

of cultural techniques must be connected to their practices. While Kittler may have learned to 

program, it is not clear that he understood the reasoning behind software engineering’s 

axiomatics. Deleuze and Guattari offer a way past the Kittlerian mode for media studies 

scholarship. The divide between industry and STEM-based definitions of software, 

programming, and source code with media studies scholarship is stark, notwithstanding some 

exceptions. While there are several factors influencing this divide, including issues of education, 

training, and professional experience, Kittler’s attitude about technology and software has 

shaped its definitions to the detriment of the field: software engineering is not as it is in industry 

or in society at large, but as it is through the lensing of Kittler’s distrust and polemics.   
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While media studies’ definitions for ‘software,’ ‘programming,’ and ‘source code’ 

incorporate aspects of industrial and STEM perspectives, more often the work attempts to 

redefine those terms, rather than intersect with them. Deleuze and Guattari’s epigraph above is 

an argument for respecting the self-sufficiency of philosophical concepts and scientific 

functions: inquiry that relies on intersections between philosophical concepts and scientific 

functions are often not fruitful because they do not give each other the respect they deserve. 

Preceding Deleuze and Guattari’s epigraph, philosophical concepts and scientific functions and 

propositions move in co-equal spheres: just as a concept requires one to return to “the event that 

gives its virtual consistency,” it is also “necessary to come down to the actual state of affairs that 

provides the function with its reference” (Deleuze & Guattari, 1994, p. 159). Concepts cannot 

dominate functions, and conversely, functions cannot dominate concepts: events are “actualized 

or effectuated whenever [they are] inserted … into a state of affairs,” but are “counter-

effectuated whenever [they are] abstracted from states of affairs so as to isolate the concept.” A 

concept, in fact, is treated as amor fati, e.g., “I was born to embody [the concept] as event 

because I was able to disembody it as state of affairs or lived situation.” Concepts are there—and 

lived—whether one likes them or not, and should be accepted as such; but concepts, which are 

virtual, rely on the functions and propositions of science to become actualized in a state of 

affairs. While related, they are not equivalent, and attempting to equate them is a type of 

domination, or over-coding, that leads to confusion: “actualization and counter-effectuation are 

not two segments of the same line but rather different lines” (p. 160). It follows from Deleuze 

and Guattari’s reasoning that, if concepts and functions are not the same, that they have 

independent trajectories as distinct lines, respecting their independence and self-sufficiency 

yields understandings about their wholeness and meaning within their respective virtual and 
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lived contexts. Such understanding ultimately frees inquiry looking at their intersections by 

eliminating the desire to dominate one or the other by redefining terms.  Scientific thought-

forms, Deleuze and Guattari argued, are self-sufficient within their own wholeness; the task of 

philosophical inquiry into the sciences is not to tell the sciences how their functions work, but to 

discover the intersections between virtual and actual, between the event of a concept as its 

consequences ripple throughout the lives of those enmeshed in a state of affairs. 

The intersections Deleuze and Guattari argued for occur not in the formation of a concept 

or function, or even in its actualization, but in how they move and shape life in accordance with 

the concept of an event. Computer science and software engineering, like any scientific or 

engineering disciplines, are governed by ontological commitments and epistemologies that are 

distinct in their definitions, practices, and actualizations from the philosophical concepts’ media 

studies investigates. An example of science respecting the self-sufficiency of concepts is found 

in Julio M. Ottino (2013) opinion piece written for the Robert R. McCormick School of 

Engineering and Applied Science at Northwestern University. In View from the Intersection: 

Why We Need the Humanities and the Arts, Ottino argued that the focus of the arts was not 

necessarily to solve problems, but to create questions, and that such a mindset allowed one to 

“[see] things in a completely new fashion,” which is “ultimately what innovation is about.” 

Humanistic inquiry and its methods, with their emphasis on concepts and the virtual, 

complement the work of engineers and scientists by allowing them to discover incongruities and 

question abstractions. The concepts of the virtual and the methods used for finding new 

questions were strengths to be leveraged, rather than over-coded.   

As evidenced in the literature review here, media studies have often sought to over-code 

the functional and propositional definitions the sciences use. That scholars in media studies’ have 
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argued that software be treated as a fetish—or treated it as a fetish purposely or unwittingly—is 

evidence of Deleuze and Guattari’s concerns: the definitions of software from those who create 

it—e.g., computer scientists, software engineers, software developers, programmer analysts, 

programmers, and web designers—are considered only insofar as to dismiss and refute them, a 

practice contrary to the independence and self-sufficiency of concepts, functions, and 

propositions that Deleuze and Guattari argued for. For example, the industry and scientific 

definitions of ‘software’ has been over-coded and redefined by media studies’ to such an extent 

that its wholeness and self-sufficiency as a distinct product from an independent thought-form 

has been ablated from its state of affairs. This means that the definition of ‘software’ in media 

studies is not the definition of ‘software’ from a scientific or industry perspective. If Deleuze and 

Guattari’s argument for self-sufficiency is taken seriously, both fields would operate with co-

equal definitions, spend time examining intersections of concepts and their manifestations in the 

actual without the need to redefine already sufficient terms. It simply is not the role of the 

philosopher, according to Deleuze and Guattari, to define how science works. Rather, it is far 

more productive to look for intersections between power or media effects and software and its 

constitution from the common definitions that respect philosophical and scientific denotations. If 

respected, the self-sufficiency of science and philosophy and art provide a baseline for 

cooperation by eliminating the impetus to over-code one another’s methods and operations.     

Over-coding is especially egregious in software’s case, where the conceptual and 

axiomatic frameworks in which it is designed, implemented, tested, and maintained are often 

ignored or glossed over in favor of attempts to redefine what it is. For example, despite software 

being ubiquitous, it is only “allegedly” something that “[all] new media … rely on” (Chun, 2008, 

p. 300). Friedrich Kittler (1999) famously recognized that “[media] determine our situation,” 
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which is true (p. xxxix); he stated that “[inside] the computers themselves everything becomes a 

number,” which is true (p. 1); but he also claims that “[our] media systems merely distribute the 

words, noises, and images people can transmit and receive. … the only thing being computed is 

the transmission quality of the storage media,” which is hyperbole to the extent that it is false and 

easily disproved by investigating how Netflix maintains streaming quality under adverse internet 

transmission rates (p. 2). Interactions with ‘software’ are always ‘computing’; an idling modern 

computer is always servicing its many processes, checking for user input events and network 

events. The software that humans interact with is always running, and therefore always visible to 

an important extent.  

Chun (2011) states that definitions of software are often reduced to a kind of “[visible 

invisibility],” because “[software] seems to allow one to grasp the entire elephant because it is 

the invisible whole that generates the sensuous parts” (p. 300). Visibility does not always equate 

to ‘scrutibility,’ to play with the word: software presents only as much of itself as it needs to 

through well-defined interfaces, a topic which Alexander Galloway (2012) wrote about at length. 

So as a matter of perspective, software is visibly invisible, because aspects of its implementation 

are hidden, stored in memory cells, executed by processors, converted to electron flows; but as a 

matter of perspective, it is important to note that such a description describes the consequence of 

an effect: users press a button or swipe next on their smartphone’s touch-screen. From the 

ubiquity of the smartphone device to the integration of computational interfaces in daily life—

like desktop or laptop computers, tablets, ATM machines, point of sale (POS) devices in stores, 

gas stations—it is safe to say that a definition of software exists that resists Chun’s allegation 

about it: software already has a definition and has reached a “full maturity” that not only no 

longer needs “the process of [its] constitution” to be explained,  and it is therefore 



www.manaraa.com

  18 

 

inappropriate—from a Deleuze and Guattarian perspective, at least—for philosophical epistemes 

to attempt to redefine it (Deleuze & Guattari, 1994, p. 161). Media studies’ scholarship will only 

benefit from integrating the definitions of established scientific and engineering functions and 

propositions, because often the consequences of their effects are more important than the details 

of their implementation.  

While much effort has been spent on attempting to define the materiality of code and the 

software it becomes, many important works in media studies’ have ignored the how and why of 

code, the practices leading to its creation, and the communicative and human practices which are 

arguably more important than the code itself. Evidenced by Zara Dinnen’s (2013) explanation 

that notable scholars like Katherine Hayles, Johanna Drucker, Matthey G. Kirschenbaum, 

Wendy Chun, Alexander R. Galloway, Adrian Mackenzie, and Eugene Thacker  have “a shared 

concerned with code as language and code as text” (pp. 175-176), media studies scholars have 

spent most of their time examining the nature of source code and the activity of programming. 

Yet, while one or more derivations of terms like “program,” “programming,” “programmer,” 

“code,” “coding,” and “source code” are indexed topics in the appendices of the major works of 

N. Katherine Hayles (1999, 2005), Alexander R. Galloway (2012), Lev Manovich (2013), 

Wendy Hui Kyong Chun (2008, 2011, 2016), Rob Kitchen and Martin Dodge (2011), and 

Friedrich Kittler (2008; 2010; with Gumrecht, 2013), terms like “software” in conjunction with 

“engineering,” “development,” or “developer” are absent. “Programming” and “programmer” are 

an action and identity that turns an individual into an analogous author writing a text. By 

excluding the broad sets of patterns and practices software engineering uses to design, develop, 

test, document, and maintain software, media studies have overemphasized the production of 

‘source code’ to the extent that ‘programming’ is now synonymous with software development. 
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Respecting the self-sufficiency of a term like ‘programmer’ or ‘source code’ would reduce the 

error of conflating those terms with software engineering. By redefining the terms, media studies 

scholarship has limited itself to a simplified definition of software that fetishizes ‘programming’ 

at the expense of a nuanced and sophisticated understanding of the communicative processes 

through which problems become solutions, and solutions become software, while allowing for 

their self-sufficiency and wholeness is the way forward to introduce such nuance into media 

studies’ scholarship. 

Current media studies and scholarly definitions of software range in degrees from 

assertions that it does not exist (Kittler, 2013, p. 223), to omitting its definition in theoretical 

discussions (Hayles, 2005; 1999). As pointed out earlier, Chun (2011) argued to “make our 

computers more productively spectral” by allowing scholars to accept the “the unexpected 

possibilities of source code” by fetishizing it (p. 20); while fetishization effectively “allows one 

to visualize what is unknown” by “[substituting] images for causes,” those images are flawed by 

being, at best, oversimplifications, and at worst, technically and socially inaccurate. Examining 

code for what it is—by respecting the self-sufficiency of its definition in Computer Science, and 

software engineering—allows it to be accurately described, explained, and understood within the 

actualized contexts in which it is produced. Fetishism is and has been the wrong move for media 

studies’ investigations of software, programming, and source code because it has led to a 

disassociation from the technical and social contexts in which they exist, are practiced, and are 

enacted. Contrasting definitions of ‘software’ in the contexts in which it is created and by those 

creating it to media studies’ perspectives provides a sense of how Chun’s argument for 

fetishism—and the fetishism’s presence in popular theoretical definitions and discussions about 

software (c.f. Winthrop-Young, “Hardware/Software/Wetware” in Mitchell & Hansen, 2010)— 
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undermines scholarly investigations of software mediation by attempting to define it as 

something it is not. The issue at stake here is not with media studies scholarship that describes it, 

from the perspective of the intersections it makes with the concepts of our lives, but with 

scholarship that attempts to re-define it, which is contrary to Deleuze and Guattari’s (1994) 

argument for the self-sufficiency of functions and concepts. This literature review, although 

brief, provides evidence for the extent to which ‘software’ as a technology is fetishized in media 

studies. Additionally, as this review contrasts the industry and media studies definitions of 

software, programmer, and source code, it will illustrate how productive a study of software 

engineering can be for future media studies’ scholarship if the Deleuze and Guattarian 

perspective about the self-sufficient domains of functions and concepts in science and 

philosophy are observed.  

From the perspective of Computer Science and software engineering, software comprises 

the communities of practice that produce the instructions which compel a computer to perform 

work. The word ‘software’ began to be used during the late 1950s by the engineers and scientists 

of the time to describe the nature of the operating contexts of a “stored-program computer” 

(Cambell-Kelly et. al, 2014, p. 168). Paul Niquette (1995) claims to have “coined the word 

‘software’” in 1953. From the perspective of a scientific and practice-driven thought-form, 

software was defined as the “set of instructions that cause [a] computer to operate; a program or 

set of programs” (Kohanski, 2000, p. 226). It’s common definition, according to Oxford 

Dictionaries, includes “the programs and other operating information used by a  

computer” to perform work with the hardware upon which it executes. Dictionary.com defines 

software in relation to computers as “the programs used to direct the operation of a computer, as 

well as documentation giving instructions on how to use them.” In Harvey M. Deitel and Paul J. 
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Deitel’s (1994) classic book on C programming, C: how to program, software is defined as “the 

instructions you write to command the computer to perform actions and make decisions” that 

allows hardware to operate (p. 3). The instructional perspective—that of guiding the work 

computers perform—is echoed in Paul Cerruzi’s (2012) MIT Press effort, Computing, where he 

describes the tasks and guiding principles of software and hardware design as managing “the 

complexity from the lower levels of logical circuits to ever-higher levels that nest above one 

another” so that a computer system can perform meaningful work (p. 83). While a duality may 

have existed between hardware and software at the inception of mechanical computation, the 

reality now is that software is often the reason for new hardware developments, because “[every] 

machine requires a set of procedures to get it to do what it was built to do,” and “[only] 

computers elevate those procedures to a status equal to that of the hardware” (p. 56). Software 

enables hardware which enables software, and so on in a process of recursion. Computer 

scientists typically view computers, historian Nathan Ensmenger (2010) explains, as “simply a 

device that can run a certain kind of software program”; it does not matter what kind of device it 

is if “it is programmable” (p. 5). His most succinct definition of software states that it “is what 

makes a computer useful,” and without it a “computer is … irrelevant, like an automobile 

without gasoline or a television set without a signal.” Computer hardware requires software, 

which is a set of instructions that cause the hardware to work on a specific task. Extending 

Ensmenger’s gasoline metaphor a step further allows software to be placed in the contexts in 

which it is drilled for, refined, stored, and shipped: Michael Mahoney (2008) argued that 

producing a history of software is hard, because all “current” software is in fact “’legacy’” 

software, because of the way “the models and tools that constitute” it “reflect the histories of the 

communities that created them and cannot be understood without knowledge of those histories, 
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which extend beyond computers and computing to encompass the full range of human activities” 

(p. 8). Software encompasses the knowledges and processes that lead to the production and 

distribution of instructions that impel any kind of mechanical or electronic device to perform 

work of some kind, so knowing what software is requires knowledge of how software is made. 

In media studies, software is defined as largely unknowable and un-seeable, as 

instructions derived from source code, and that computers—and therefore software—created 

themselves. While some definitions of software tend to half-align with those found in Computer 

Science and software engineering, like Rob Kitchen and Martin Dodge’s (2011) which states that 

“software consists of lines of code—instructions and algorithms that, when combined and 

supplied with appropriate input, produces routines and programs capable of complex digital 

functions” (p. 3), they tend to exclude the communities of practice that design and produce it. 

Software tends to be defined as instructions, and depending on the scholar, may not exist at all if 

it did not need to intersect with humanity: Kittler (2010) has described computer instructions in 

terms of electrical voltages (p. 226), which he elaborated on in his essay, “There Is No Software” 

(2013), by reasoning that “elementary code operations, notwithstanding their metaphorical 

promises (e.g., ‘call’ or ‘return’), amount to strictly local manipulations of signs and therefore 

(more’s the pity, Lacan) to signifiers of varying electric potentials” (p. 223). He ultimately 

argued that software would not exist at all if computers “did not need … to coexist with an 

environment of everyday languages.” Or software exists, but “is extremely difficult to 

comprehend,” which Wendy Chun (2008) attempted to simplify by treating it as a metaphor that 

“illuminates an unknown” which “does so through an unknowable (software)” (p. 2). Software, 

as such, has a degree of inscrutability: computers are “mediums of power” and software is a kind 

of “vapory materialization” with a “ghostly interface.” In Software Takes Command, Lev 
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Manovich (2013) explains that the languages of modern society are the languages of software, 

and that software “is the invisible glue that ties” all aspects of modern societies “together” (p. 8). 

In his essay, “Hardware / Software / Wetware,” Geoffrey Winthrop-Young (2010) dismisses the 

Oxford English Dictionary’s definition of ‘software’ as “pithy” because the “computer / software 

binary restages the old boundary disputes between body and spirit,” which makes an easy 

definition of the term complicated (p. 189). He echoes the ‘unknowable’ and ‘un-seeable’ 

definition by explaining that it may be only “the most visible part of a bewildering edifice … that 

for the vast majority of users remain out of sight,” which in turn “interposes itself between the 

user and the basic operation of the servile tool” (pp. 190-191). Winthrop Young cites Kittler’s 

assertion in “There Is No Software” that while all software operations “can be reduced to 

hardware operations” (p. 193), computers are “both very social and irredeemably autistic,” to an 

extent such that “it is not enough to say that human communication is modeled on the computer” 

(p. 197), implying that computers are endowed with a kind of self-generating agency, 

independent of the humans who engineered and produced them. N. Katherine Hayles (1999), for 

example, used an assertion by Alan Turing to empower hardware with a sort of disembodied 

intelligence and post-human agency that is proved through the ‘Turing test,’ which Alan Turing 

explained as one where, if by ‘talking’ to a computer, a human could not determine if they were 

talking to a person or a program, the computer was thinking (pp. xi-xii). As used by Hayles, 

Turing’s test ignores the software techniques and mathematical advances necessary to 

encapsulate grammar parsing and content analysis required to even begin understanding the 

problems associated with accurately understanding the meanings behind human language. 

Ultimately, Winthrop-Young’s (2011) explanation of Kittler’s attitude toward software informs 

media studies general transgression of it: “what [irked] Kittler is that … user-friendly software 
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tricks us into believing that we are in charge of the computer. We continue to think of computers 

as mere tools, and this, in turn, serves to perpetuate our narcissistic self-image as homo faber, 

man the toolmaker” (p. 75). Software is untrustworthy, inscrutable, and aligned against 

humanity. So, despite Manovich (2013) recognizing that “software as a theoretical category is 

still invisible to most academics, artists, and cultural professionals interested in IT and its 

cultural and social effects” (p. 9), there has been an explicit rejection of the definition of 

‘software’ as it has been employed by the thought-forms responsible for its maintenance in favor 

of a broad cynicism.  

From an industry perspective, programmers (synonymously referred to as a developer, 

software developer, or software engineer) are the people who design and develop software, and 

‘programmer’ is a title encapsulating practices beyond those of writing computer code. 

According to PC Magazine’s encyclopedia of terms, the “software business is a service industry 

that involves human thinking almost exclusively,” which “contrasts with computer hardware or 

any other industry that makes equipment, whereby manufacturing is a major part of the 

business.” The Oxford Dictionaries definition states that a programmer is “a person who writes 

computer programs,” which is refined in Kohanski’s (2000) definition, which explains that a 

programmer is a person “trained in one or more computer languages” who uses those languages 

to create computer programs (p. 224). The Bureau of Labor Statistics (BLS) of the United States 

Department of Labor (2019) has entries for computer programmers and software developers: 

programmers “write and test code that allows computer applications and software programs to 

function properly,” while software developers “are the creative minds behind computer 

programs,” definitions which flow into one another. Software developers, systems analysts, and 

other areas of expertise working with software have tended to be “lumped together by outsiders 
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as programmers” (Ensmenger, 2010, p. 14). The term “programmer” arose from “coder,” which 

“implied manual labor, and mechanical translation or rote transcription,” a mistake John von 

Neumman and Herman Goldstine—authors of the first textbook on programming—quickly 

realized as erroneous: “[what] had been expected to be a straightforward process of coding an 

algorithm turned out to involve many layers of analysis, planning, testing, and debugging” (p. 

15).  

Programming and source code are covariant terms. The job of programming computers, 

or the task of ‘programming problems’ as Cambell-Kelly et al. (2014) called it, grew to 

encompass “more than simply writing efficient and bug-free code”: as the complexity of 

software increased, the individuals designing and writing the software became increasingly 

involved “in a broad range of activities that included analysis, design, evaluation, and 

communication—none of which were activities that could be easily automated” (p. 183). Today, 

job titles and responsibilities tend to refer to a type of expertise relative to the contexts in which a 

problem resides, such as those outlined by a corporation’s needs, or a societal issue. For 

example, for one company, a web developer’s job responsibilities might encompass expertise in 

a range of skills that overlap with ‘software engineers’ in another company: titles can be highly 

interchangeable. While seniority and autonomy tend to determine the extent to which developers 

are required to cultivate many skills, “full stack” developer positions are increasingly common. 

Trista Liu (2017) describes full-stack developers as having wide “horizontal [skill trees]” who 

have knowledge at width, rather than at depth. A “full-stack” developer is expected to meet with 

clients, gather requirements, produce design documents, develop the software, test it in a staging 

environment, gather feedback from the clients prior to releasing the software into a production 

environment, refine it, and then maintain it over time. Despite the caveats of the role—the 
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emphasis on width rather than depth of a skill set—most of the tasks previously described are 

common to any Software Development Life Cycle (i.e., Waterfall, Agile, etc.), and rely as much 

on communication skills as purely technical ones. Clear communication of and about a problem 

mitigates errors by increasing the likelihood that the developed software reflects customer 

requirements; programming is but one area of expertise software developers must gain 

competency in. 

Definitions of programmers and programming, in media studies, vary in degrees from 

industry positions. Manovich (2013) hews closest to established definitions, describing 

programmers as those who have “programming skills,” with “access to a computer, a 

programming language, and a compiler” (p. 93). Programming skills produce software. He 

explains that “software development is an industry” which is “constantly balancing between 

stability and innovation, standardization and exploration of new possibilities.” Kitchin and 

Dodge (2011) also work from industry positions, describing programming as a skill, the purpose 

of which is to “construct a set of coded instructions that a microprocessor can unambiguously 

interpret and perform in ongoing flows of operations” (p. 25). Programmers produce code which 

are ‘unambiguous’ instructions for a computer to follow. The code that programmers produce 

should be clear enough for a computer to follow, and for a human to understand, maintain, and 

reproduce in other contexts, for other problems.  

One of the most influential definitions of ‘programming,’ programmer, and code—the 

issues entangled with the skills and acts of producing software originates with Kittler, which has 

introduced a stark divide in terms of the ambiguities (or lack thereof) of source code and what it 

is which programmers produce. His definition of ‘programming’ is commonly reflected in media 

studies scholarship, which commonly describes it as an analog for writing, efforts of which have 
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led to attempts to redefine it in terms of signification (rather than asignification), e.g., ambiguity 

in favor of unambiguity. For example, in a recent collection of essays about Kittler studies 

published in 2015, Kittler Now: Current Perspectives in Kittler Studies, Stephen Sale 

summarized Kittler’s perspective on programming languages as those which have “toppled the 

monopoly of ordinary language” and are “multiplying in order to obfuscate the technical 

decisions made at a hardware level” (p. 64). Kittler (2013) set the mold for this interpretation of 

computation and programming when he conflated writing with a “peculiar kind of software … at 

the incurable confusion between use and reference” (p. 220). But if what Winthrop-Young 

(2011) pointed out about Kittler’s attitude about software is true, that “he came to deny its very 

existence” because “it can be reduced to basic hardware operations,” programming cannot exist 

either (p. 75), then what kind of writing is programming? Kittler believed that “[we] must study 

basic programming and operating languages in order to overcome their dependence on the 

software opium handed out by the industry” (p. 77), so software—in its non-existence—must be 

a form of power or coercion, which is a theme Chun (2016) argued in later work: computers are 

a medium that are “essential to organizing and managing, assessing and predicting—that is, 

programming—populations and individuals” (p. 19). Programming then becomes a kind of 

writing that inscribes command and control logics onto the canvas souls of human beings.  So, 

programming, as a kind of writing, produces text that may not exist at all, but at the very least 

produces something that is a form of power, which is itself a form of fetishism for the 

mechanisms, processes, and social and machinic relations that categorize and coerce humans. 

‘Power’ and this kind of ‘command and control’ narrative is evident when Chun (2011) 

recognizes programming as an axiomatic but describes it in terms of writing. Despite using 

Deleuze and Guattari’s reasoning, she questions rather than respects the industrial definitions of 
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programming by describing commands issued to a computer using a programming language as a 

“certain logic of cause of effect, a causal pleasure that erases execution and reduces 

programming to an act of writing” (p. 101). Here writing implies a hermeneutic framing, which 

are the domain of concepts, in terms of Deleuze and Guattari; source code, defined from an 

industry and scientific perspective, is less ambiguous. Chun had, earlier in her work, defined 

programming as a sort of logos which “turns program into a noun—it turns process in time into 

process in (text) space” (p. 19), the emphasis on ‘text’ is important, because it indicates the 

presence of a bias in the interpretation of another thought-form’s definitions, attempting to 

coerce in this case something functional and propositional into that which is signifying and open 

to hermeneutical interpretations. From an industry perspective, programming is writing insofar 

as it is ‘writing’ instructions a computer will follow that humans can understand for further 

development purposes. Kohanski (2000) defined source code as “a program in the form of 

statements written in some language that a human being can understand. A compiler or 

assembler will convert source code to object form, and the linker will combine one or more 

objects into an executable program” (p. 226). What could media studies gain if it moved away 

from Kittler’s distrust of software toward thorough understandings and appreciations of software 

development’s axiomatics and problem-orientations? At this stage, regardless of whether a 

machine learning, artificial intelligence, or human intellect is generating ‘programming,’ each 

are generating instructions for a machine. Within the machine domain, source code is what it is, 

in a cloyingly tautological sense; it is not until software intersects within human society that it 

begins to take on new meanings. Arguably, software always mediates, but not from a position of 

ethereal vapor, or electrical haze. The dominant definition of software rightly resides in industry; 
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making sense of software requires that the practices leading to its production are enumerated and 

understood so that narratives of sourcery can be dispelled productively. 

There is an impasse in the ways philosophy and science speak of each other. In the 

epigraph to this section, Deleuze and Guattari (1994) stated that “No doubt states of affairs that 

are too dense are absorbed, counter-effectuated by the event, but we find only allusions to them 

on the plane of immanence and in the event” (p. 161). This means that, for however a state of 

affairs, in its concrete, actualized form is configured, it alludes to philosophical concepts through 

indirect means, and vice versa: philosophical concepts will “counter-effect[uate]” an event in 

response to a change in a state of affairs, but do not directly affect the composition of the 

functions and propositions that configured it. Philosophical concepts and scientific functions 

relate, rather than correspond, with each other: they are self-sufficient. This is important, because 

as Deleuze and Guattari argued, “[it] is in their full maturity, and not in the process of their 

constitution, that concepts and functions necessarily intersect”; the task of philosophy is not to 

redefine the functions of the sciences, nor is it the job of the sciences to redefine concepts 

emerging from philosophy.  

Software, programming, and source code represent an impasse where the key terms 

provided by science are modified in such a way that their fundamental meanings are undermined 

by philosophical overcodings. This represents a shift away from an actual state of affairs into 

explorations of ‘intersections’ that reside primarily in a philosophical domain. As evidenced by 

the comparison of industry and media studies’ definitions of ‘programmer,’ ‘source code,’ and 

‘software,’ their self-sufficiency has not been respected. Deleuze and Guattari’s thought-forms 

were argued for to refocus attention on intersections, on the becomings of relations between 

concepts and functions, so that new things can be discovered, described, defined, and offered 
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forth in such a way as to give rise to new concepts and reflective functions, “each being created 

only by their specific means” (1994, p. 161). Self-sufficiency is a way to provide a basis for 

collaboration, hence the purpose of this dissertation project is to model Deleuze and Guattari’s 

argument at a point of intersection within the scholarship and history of software engineering. 

 

The Visibility of Software Requires Software Engineering  

Treating software as always visible requires that software engineering be defined in terms 

of what it is not, which is Computer Science. It further requires that the practices and reasoning 

of software engineering be both enumerated and respected for the purposes they originated, to 

solve problems computationally. Software is the visible expression of a solution to a problem. Its 

visibility not only outlines its functions but provides insights into the ways it was designed and 

implemented. Understanding software from the perspective of software engineering practices 

breaks the ‘invisible’ narrative apart by revealing the common scenarios and axioms that lead to 

its development and deployment under most circumstances. Software became ubiquitous as soon 

as it was deployed broadly in society at large within the cheap read only memory (ROM) chips, 

embedded processors, and integrated circuit boards of toys and consumer products in the late 

1970s and early 1980s; it is not mysterious if subjected to scrutiny that takes the processes used 

to problematize its solutions into account. Treating software as invisible, or as a fetish, is simply 

a failure to engage with and understand the broader communities of practice that produce it. 

Software is the visible artefact of a problematic; software is the visible solution to a problem. 

Sociotechnical regimes form around a problematic. For understanding software from an 

engineering perspective, what matters most is how a problem is translated from one domain, that 

may be continuous and analog rather than discrete and digital, into a computational one: can the 
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problem be solved computationally? If so, what should the solution look like? What is the 

solution supposed to do? Can the problem be broken down into smaller parts, or must it be 

solved in its entirety? Software and its effects are always visible from the perspective of an 

engineer because matters of implementation allude to issues of design, which is always rooted in 

a problematic, which Deleuze (1994) defines as “the ensemble of the problem and its conditions” 

(p. 177). Problems, for Deleuze, are immanent to their conditions: “the complete determination 

of a problem is inseparable from the existence, the number and the distribution of the 

determinant points which precisely provide its conditions.” Solutions, on the other hand, tend to 

“conceal the problem,” because they become representational and experiential, factors which 

tend to outweigh and overshadow the broader implications a problem may have (p. 178). If 

software is treated as a solution, its implementation and manifestation is less important than the 

problem it seeks to produce a “solution-instance” for (p. 178); rather, an instance of ‘software’ or 

the manifold of processes in a ‘software environment,’ from a user’s desktop operating system 

(OS) to those run in server farms by Microsoft or Google provides clues to an orientation that 

lead to its implementation and purposing.  

The sociotechnical regime, developed here over three chapters, incorporates Deleuze and 

Guattari’s respect for the distinct nature of scientific functions and philosophical concepts. By 

defining what a sociotechnical regime is, relating software engineering’s history in terms of a 

regime, and describing how that regime intersects with society at large through processes of 

transduction based on signifying and asignifying transmissions, this project offers an alternative 

to the Kittlerian perspective on software which lead to Chun’s later argument for its fetishization. 

Software is always visible, even when its source code is inscrutably inscribed in the ROM chips 

of a cheap toy, if it is considered as evidence of a broader problematic, itself belying a regime 
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incorporated to solve problems within and for those conditions. Understanding software 

engineering practices can expose a broad array of mediating effects that work within and without 

the industrial practices producing the software that mediates consumers, users.  
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Chapter 2: Problem-Oriented Sociotechnical Regimes 

Problems work through their conditions. Truth, for a software developer, flows from the 

contexts in which they find themselves into the tasks they must complete. And for software, the 

problems and conditions of its encounters with us, in our situations, to borrow the spirit of 

Kittler’s (1999) language, are mediated by ‘software engineering’ processes and identities long 

before the software itself is produced and deployed to act upon us. Software engineering 

processes encompass the machine and the software; while it is obvious that ‘engineering’ implies 

a way of solving problems, the fetishization evident in media studies indicates that problems are 

being separated from their conditions. Kittler’s (2013) attitude toward software and hardware has 

greatly influenced media studies, and while the assertion he made about the Central Processing 

Units (CPUs) in machines is true, in that they “can do both less and more than [their] data 

sheets” reveal (p. 216), processors and their data sheets have not been placed in the broader 

software engineering contexts that recursively generate them. In fact, what is most striking in 

media studies is that, while the spirit of Kittler’s suspicion is borne out in the works of Alexander 

Galloway (2012), Mark Sample (2013), or Felicitas Kraemer and Kees Overveld (2010), 

seemingly lost in scholarship examining the technics of computation is one of the most striking 

points he made in his famous essay, “Protected Mode,” where he stated that “[the] lovely phrase 

‘source code’ names the literal truth” (p. 218). De-fetishizing source code requires that the 

communicative practices that feed into its creation be factored into examinations of software, 

into the practices which cohered as a sociotechnical regime called software engineering. Taking 

into consideration what a regime is allows those data sheets to be viewed in the context of the 

software engineering practices that recursively fed them, and fed from them, which generated 

them, which produced the CPU model they detail. Such considerations will allow media studies 
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to move away from the nebulous opacity Kittler thought the codes in CPUs represented, from a 

principally fetishistic perspective of source code and programmers, to one that factors in the all-

to-human considerations shaping the truth of a software developer, which is that they are always 

enmeshed in the problematics of their situations. Kittler’s statement about ‘source code’ as literal 

truth should be taken literally, because it represents a perspective Deleuze and Guattari (1994) 

argued for by stating a self-sufficient definition of code that does not attempt to overcode or 

deterritorialize: “philosophical concepts act no more in the constitution of scientific functions 

than do functions in the constitution of concepts” (p. 161). Source code, for a computer, is literal 

truth, having been “created only by [its] specific means.” This chapter develops the concepts of 

problem-orientation and the sociotechnical regime and describes a Deleuze and Guattarian 

framework for understanding how problems organize and coalesce into practices and identities. 

Those practices and identities are captured by sociotechnical regimes, which are sets of technical 

and social practices forming relatively stable recursive values (operating principles, statements of 

purpose, mores), identities (the project manager, the computer scientist, the programmer analyst), 

and product outcomes (software, user stories, unit tests, memos, code) as means to solve 

problematics.  

This chapter establishes a basis for thinking about software engineering as a problem-

oriented sociotechnical regime by looking at three areas. First, it starts by examining 

problematics, considered by Deleuze to be a combination of a problem with its conditions, which 

looks at its Bergsonian origins, the significance of problematization to Deleuze and Guattari’s 

(1977) Anti-Oedipus, its role in the conceptual and analytical approaches to What Is Philosophy? 

(1994), and why problematization is important for understanding their thinking about the 

sciences. Next, it continues by describing how problem orientations emerge from a problem’s 
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material and experiential encounters with the world, which provides a basis for understanding 

how problems can lead to the organization of a discipline focused on solving them, leading to 

disciplines encapsulating identities and practices, like Computer Science. Finally, it defines 

sociotechnical regimes as a problem’s manifestation in a human world, developing an analytical 

framework using Deleuze and Guattarian concepts to account for and describe why a regime’s 

development of social and technical practices coalescences around continuing encounters with its 

governing problematics. It concludes by describing why problem-orientation and sociotechnical 

regimes matter for understanding software by mapping software engineering as a sociotechnical 

regime and briefly describing three of the fundamental problems guiding and complicating its 

organization and focus as a regime, a history of which is developed further in Chapter 3. The 

work outlined here provides a framework for understanding the relationships between 

problematics and sociotechnical regimes and is the first of three steps this project makes in 

responding to its exigence. For media studies, the concepts of problem-orientation and 

sociotechnical regimes and their relationships are the basis for a means to de-fetishize (Chun, 

2011; 2008) and disentangle the identity of the ‘programmer’ with the primacy of ‘source code.’ 

The problem-oriented sociotechnical regime encapsulates a nuanced understanding of how the 

broad array of social and machinic processes used to design and implement software mediate 

problems themselves, which, by altering the problems they seek to solve in subtle and explicit 

ways, have greater consequences in a software-dominated world than source code’s materiality 

or treating the programmer as its soul author.  

Before proceeding into this chapter, it is worth unpacking ‘problem-orientation’ and 

‘sociotechnical regime’ in general terms, to frame and reflect on the role this chapter plays in 

responding to part of this dissertation’s exigence. From there, I will briefly relate my definitions 
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to Deleuze and Guattari’s theoretical considerations. Framed as such, these cursory definitions 

will provide a conceptual basis for relating the dense and nuanced works of Deleuze and Guattari 

to the overall shape of a regime like software engineering. To begin with, a problem-oriented 

sociotechnical regime like software engineering enacts many types of processes to complete the 

work necessary to solve problems. I define problem-orientation as a type of task-based, process-

driven form of effort that parses problematics according to some orienting principles that dictate, 

by and large, how the problem in a problematic is to be understood and solved relative to its 

conditions. I employ Deleuze’s (1994) definition of problematics, which is the combination of a 

problem with its conditions, which has several implications: first, problems are inseparable from 

their conditions; second, problems reside in a set of conditions; and third, problems arise from 

their conditions (p. 177). According to the Oxford English Dictionary, a process is, in its noun-

form, “a series of actions or steps taken in order to achieve a particular end,” which for 

computing is “a series of interdependent operations carried out by computer”; as a verb, process 

becomes the performance of “a series of … operations on (something) in order to change or 

preserve it,” and for a computer, ‘to process’ becomes how a computer “operate[s] on (computer 

data)” using a program. Problem-orientation is a way of describing the types of tasks software 

engineers perform from a Deleuzian perspective. For software engineering, the terms that fall 

under the Software Development Life Cycle (SDLC) and Software Testing Life Cycle (STLC) 

processes, like structured programming, waterfall, or agile, are considered methodologies that 

govern how problems are interpreted relative to their conditions, how work is conducted 

according to those conditions, and what constitutes a solution for those conditions. Problem-

orientation describes a mode of ideation and being that governs the processes used to instigate 

becomings, e.g., how software engineers produce software.  
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On the other side of ‘problem-oriented,’ I define a sociotechnical regime as a collection 

of practices and knowledges and neighboring relations by which disciplines distinguish and 

perpetuate themselves. This concept is born out of necessity, because a large part of what I 

believe leads source code and programming to be overemphasized in media studies is rooted in 

the conflation of ‘software engineering’ and ‘software engineers’ with contemporary 

understandings of ‘Computer Science’ (that inevitably refer to Alan Turing and computation in 

the universal, abstract sense). Basically, if software engineering is not seen as distinct from 

Computer Science, the ideation of universal computation and programming as writing another 

form of text will always favor understandings of ‘programming’ as acts of problem-solving 

distinct from conditions. This leads to arguments in media studies that avoid the broader 

implications of software by ignoring the most important parts of its development, how its 

developers negotiate, understand, and overcome the conditions in which (and for which) it is 

developed. I use Deleuze and Guattarian concepts to not only parse related science-based 

disciplinary identities, but to show how those identities can employ similar processes—like 

programming—for not only different purposes but weighted with different values. De-fetishizing 

source code and programming requires that software engineering be recognized as a distinct, but 

related, discipline to Computer Science while emphasizing the significance of process over 

singular aspect of implementation, of actual process over abstract universalism. Sociotechnical 

regimes represent a framework employing Deleuze and Guattari’s concepts of the event, the 

plateau, the rhizome, smooth and striated spaces, and the incorporation of and relation to a plane 

of reference to understand how a software engineering can become a discipline distinct from 

Computer Science, even as it produces (and reproduces) the functions and propositions related to 

computation. 
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Problematics 

This section defines problematics and discusses issues pertaining to their discovery and 

description in the sciences—a topic Deleuze and Guattari (1994) explored in their last 

collaboration—and applies it briefly to computational theory and practice. The purpose of this 

section is to explain what problematics are, and why it is difficult to separate problems from their 

conditions. This section describes and defines problematics in relation to a common media 

studies narrative, e.g., the abstract idealized form of computation produced by Alan Turing’s oft-

quoted concept of the universal computer, to show why and how solutions are often mistaken for 

their problems. Deleuze (1994) used the term ‘problematic’ to describe the inseparability of a 

problem from its conditions; problematics serve as the conceptual basis for teasing the problem 

of computation away from its solution (‘universal machine’), and in so doing will root the 

actions and products of programming in a larger set of actualities and processes. This 

reconsideration of problems and conditions will act as the basis for seeing through the fetishism 

of the ‘abstract universal’ narrative and the conflation of programmer and source code with 

software. So, while software may be vaporous or cloudy in the sense Chun (2008) invokes, in 

that it runs everywhere and has a complex form of materiality (electrical signal, compiled 

executable, or source code), this section establishes a basis for understanding the significance of 

problematics for theories of software. Bound as such within a broader problematic, software’s 

materiality transcends its programming, compilation, and execution; software is rather the 

material of ‘becoming,’ of investments of the processes that bring it to life, those of requirements 

gathering, specifications, design, programming, testing, quality assurance, documentation, and 

maintenance. Because of problematics, modern software—up until the point its development is 

abandoned—can be understood as a materiality of continuous delivery, of the continual 
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mediation of problems by conditions and vice versa. Understanding problematics begins to bind 

the concepts of software, programming, and source code to the practices which bring them to 

life. In so doing, this section sets the stage for the next section, ‘Problem-Orientation,’ which 

details how actions propositionally bind to practices. 

Problematics, defined by Deleuze (1994) as the combination of a problem with its 

conditions, demonstrates a form of materialism that is important for understanding problem-

orientation (p. 177). Deleuze’s understand of problematics helps to both understand the allure of 

the abstract universal computer narrative, and to diverge from it. Problems are defined by Oxford 

Dictionaries in three ways that are relevant here: as “a thing that is difficult to achieve or 

accomplish”; as “an inquiry starting from given conditions to investigate or demonstrate a fact, 

result, or law”; and as “a proposition in which something has to be constructed.” According to 

Todd May (2005), Deleuze believed that problems are “an open field in which a variety of 

solutions … take place,” and that “[it] is the problems rather than the solutions that are primary” 

(p. 84). Of those definitions, the terms “thing” and “proposition,” and phrase “inquiry starting 

from given conditions” are significant, because they demonstrate Deleuze’s thinking by 

demonstrating how problems are things, they are described in terms of propositions, and they are 

rooted in a set of conditions. Deleuze argued for a definition of ‘problem’ that disconnected it 

from ‘solution’: “Identities come later, as particular solutions to the problems that being places 

before us, the problem that being is. To confuse those identities with being is to confuse the 

actual with the virtual. It is to confuse solutions with problems” (May, 2005, p. 85). To avoid 

confusing solutions with problems, Deleuze (1994) argued that we must reject the notion that 

“problems are given ready-made, and that they disappear in the responses or the solution,” but 

actively probe for problems in the conditions in which they arise (p. 158). Problems have “their 
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own sufficiency” (p. 159). Problems determine what is possible by linking propositions to sets of 

conditions. They are not transcendent in the Kantian sense, but distinctly material, immanent in 

that they emerge from their conditions. 

This is where a problematic can parse an abstract notion of computation like Alan 

Turing’s (1936) to distinguish the problem of ‘general computability’ from the solution of a 

‘universal computer.’ The concept of the universal computer, called a Universal Turing machine, 

is that to complete any kind of work with a computer, the computer must have a set of self-

describing and generalized instructions that defined the way it worked on the data associated 

with the problems any human could describe. Essentially, a Universal Turing machine is a 

“single machine which can be used to compute any computable sequence” (p. 241), because its 

programming (provided by an infinite reel of tape) not only described the data to work on but 

defined how the instructions worked for each operation using that data. This explanation 

represents a solution to the problem of generalized computation because it cannot exist without 

describing machinic assemblages: “The machine is supplied with a ‘tape’ (the analogue of paper) 

running through it, and divided into sections (called ‘squares’) each capable of bearing a 

‘symbol’” (p. 231). Considered another way, the problem of general computability and of 

making machines perform any kind of work cannot be extracted from its machinic conditions.  

While it seems obvious that computers imply machinic actualizations, that Turing 

machines cannot be imagined without using a metaphorical tape reader indicates the extent to 

which problems are seen in terms of their solutions. Thomas Osborne (2003) uses the term 

‘problematology’ to describe the of work of studying problems, offering a way forward in terms 

of distinguishing problems from solutions while accounting for the influence conditions have on 

their problems. He traces the influence of problem-orientation in Foucault and Deleuze’s work 
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by examining the role of Canguilhem and Bergson, respectively. While Foucault is not the 

emphasis of the work conducted by this dissertation, Osborne importantly points to how a kind 

of problem-orientation resulted in Foucault’s important works. Canguilhem believed that 

problems, rather than theories, were a “way of giving substance to the history of thought” (p. 3), 

and his project, outlined in The Normal and the Pathological written in the 1940s, influenced 

Foucault’s historical epistemologies, using genealogical methods. As Koopman (2013) states, 

“[genealogies] articulate problems. But not just any problems. Genealogies do not, for instance, 

take up those problems that come with supposed solutions readily apparent” (p. 1); Foucault’s 

discontinuous histories, criticized by his historian contemporaries, are discontinuous precisely 

because they must be to articulate a network of relations around which a problem germinates. 

The problems of life are almost never linear, but they are progressions over time, and are 

difficult to imagine without referring to their conditions.  

Similarly, Bergson’s emphasis on problematics influenced Deleuze’s work to the extent 

that Bergson’s beliefs about problems emerge (pointedly) in Deleuze’s work in Difference & 

Repetition, Logic of Sense, and Foucault (p. 7). Bergson argued that  

[the] truth is that in philosophy and even elsewhere it is a question of finding the problem 

and consequently of positing it, even more than of solving it. For a speculative problem is 

solved as soon as it is properly stated. By that I mean that its solution exists then, 

although it may remain hidden and, so to speak, covered up: the only thing left to do is to 

uncover it. But stating the problem is not simply uncovering, it is inventing. (Bergson, 

1991, p. 51) 

Threads of Bergson’s comments resound in Deleuze’s attitude toward problems, by favoring the 

discovery and enumeration of problems over solutions by examining the consequences and many 
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becomings of the problem within its set of conditions. Problem-orientation can be seen in 

Deleuze and Guattari’s (1977) turn toward ‘machinic assemblages’ and the Oedipalization of the 

subject through the triangle of ‘mommy-daddy-me’: on one hand, they sought to describe why a 

subject might want to be repressed within a socius, broadly outlining the problem of a subject’s 

willing participation in a paranoid, if not outright fascistic system; on the other hand, the point of 

Anti-Oedipus is to confound clearly defined scopes of analyses, demonstrating (through a type of 

performance) how subjectivities are entangled within global and local networks of relations that 

are aligned and misaligned, collaborative and competitive, to demonstrate that problems 

emerging from life are messy. Consequently, Deleuze and Guattari were focused more on the 

processual ontologies of subjectivation, rather than a genealogical or historical epistemological 

approach. Desiring machines are repressed—but why? “To what end? Is it really necessary or 

desirable to submit to such repressing? And what means are to be used to accomplish this” 

(1977, p. 3)? The underlying problematic—the problem hinted at in the solution materialized 

within a state of affairs—is stated as, “[given] a certain effect, what machine is capable of 

producing it?” The point of a project like Anti-Oedipus, arguably, is that we can only see true 

problems if we entangle temporal and spatial analyses, allowing the results of our labor—

expected or not—to come from the analysis of intersecting horizontal and vertical planes.  

Deleuze and Guattari’s work in Anti-Oedipus constantly questions the solutions a despot 

employs by iterating over the interaction of a problem with its conditions. When Deleuze urged 

us to stop treating problems as “givens” (1994, p. 159), he entreated us to discuss problems 

outside of their state of affairs, so that as many of the solutions produced by a problematic can be 

enumerated and explored. Specifically, Deleuze stated that “[even] if a problem is concealed by 

its solution, it subsists nonetheless in the Idea which relates it to its conditions and organizes the 



www.manaraa.com

  43 

 

genesis of the solutions” (1990, p. 54). Hence, like the problem of general computation, the 

solution is often mistaken for the problem, and misinterpreted through the by-product of a 

perspective that does not consider it problematically (Deleuze & Guattari, 1977, p. 3). Problems 

define the extent to which a solution can be, and they shape a state of affairs in myriad ways. 

Software solutions blossom within life’s milieu. It is the task of a problematology to connect 

solutions to their actual problems, and to correctly interpret the effect its conditions have on its 

implementation.  

De-conflating problems and solutions is difficult work, because conditions—like those 

Turing experienced in relating computer operations to the horizontal movements of tape reels—

are intrusive. By following up their initial question linking effects to the machines producing 

those effects by asking, “given a certain machine, what can it be used for” (p. 3), Deleuze and 

Guattari (1977) offer a model for framing questions in terms of problematics. In doing so, they 

describe a process of problematization, where seemingly straightforward questions lead to the 

integration of many domains of knowledge. This is because problems are immanent to many 

types of conditions; problems cut across many scopes and boundaries, both social and machinic. 

What does it mean when the same problem has many solutions, or when the same machine is 

used to produce many effects? Does repetition in this way represent a failure to understand the 

problem, or complete dominance of it? This kind of questioning allows us to look beyond the 

actualizations of ‘effects’ within a state of affairs and begin working toward answering how and 

why those effects are evidence of a problem. And while the problem may not be fully 

understood, even by those entangled by the forces of production, like Facebook’s software 

engineers asked to ‘solve’ the given problem of monetization, accurately connecting a solution to 
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it allows us to gain a better understanding of the true problem at the root of the efforts to solve 

them.  

Problematics are confusing because of their experiential factors. Tape, at the time Turing 

devised his universal machine, made the most sense because it was materially feasible. Deleuze 

(1994) describes a part of experience as sense, which is “a condition of real experience, not 

possible experience” (pp. 153-154). Extracting a problem from its conditions is difficult because 

it requires one to destroy the “image of thought which presupposes itself and the genesis of the 

act of thinking in thought itself,” because sometimes, “[something] in the world forces us to 

think. This something is an object not of recognition but of a fundamental encounter” (p. 139). 

Problems are inextricably linked to their conditions and mistaken for their solutions because 

conditions and solutions are typically experiential and actual, while problems are generally 

virtual. A problematic approach, through the successive encounter with the effect of a solution, 

yields some or all of the nature of the problem: the “ideational material or ‘stratum’” defining its 

“condition of truth” yields itself as sense (Deleuze, 1990, p. 19), which itself “cannot be reduced 

either to the object designated or to the lived state of the speaker” (Deleuze, 1994, p. 154). To 

have a sense of a problem is to experience those conditions in a way that allows us to begin to 

explain the experience we have of that solution. But sense can be misleading: in the case of the 

Universal Turing machine, the problem of affecting work computationally is conflated with the 

machine itself, which is part of a solution that can be experienced directly. Problematic analysis 

allows this type of real experience to be teased away from the problems, in their virtual scope, by 

allowing things that can be experienced to be categorized as part of its conditions. This means 

that source code and programming are but part of the conditions of the problematic of software.  
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To close this section, Osborne’s (2003) summary of Bergson’s perspective on 

problematics is helpful because it describes a type of ontological investigation that incorporates 

the conditions a problem resides in into a processual form. Problems tend to exist in spite of their 

conditions. May (2005) described Deleuze’s perspective on solutions as “a particular form of 

exhaustion” (p. 85), which is evident in Osborne’s (2003) analysis of Bergson. Not only are 

problems the central aspect of life, according to Bergson, but that life exists in its many 

specializations is a demonstration of the problems it continually solves: “the contingency of 

problems and their local solutions” compound “in ever-multiplying webs of vital ordering and 

sub-ordering” (p. 6). Following this reasoning,  

an organ such as the eye is a solution to certain problems of action faced by the living 

being; but it is also something which is effective in the sense that it is capable of 

responding to future problems which are at present unknown. (p. 6) 

The problems the eye evolved to address required open-ended solutions operating over grand 

scales of time; the eye itself is not a finalized structure and is therefore open to continuous 

evaluation. By focusing on Bergson’s ‘problems of the eye,’ the emergence of a system that is 

anticipatory, rather than final comes into view. The eye, like software solutions, are contingent 

on their conditions and are open to re-evaluation. Does the eye continue to serve its purpose? 

Can it respond to new requirements, and conversely, what does it lack for? What happens when 

it is insufficient, or ineffective? Problematics describe how a problem is immanent to its 

conditions, and problems tend to be solved in multiple ways for multiple reasons. The important 

consideration Deleuze (and Bergson) recognized was that problems tend to be re-solved, 

iteratively, repetitively, with a degree of difference between those repetitions. This focus is 

explicitly compatible with modern software, which, until it is abandoned, at least, is an exemplar 
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of continuous delivery, of difference and repetition, of being maintained and re-released as bugs 

are found or features are added. Deleuze “regarded the analysis of problematics as being 

specifically a philosophical project” (Osborne, 2013, p. 4): problems may literally be the 

elephant’s foot that scholars take turns touching, describing it in parts, as the analogy goes. A 

broad, expansive problem may assert itself within a locality and be misunderstood because its 

true extent and scope cannot be fathomed due to the many ways it is solved for and mediated by 

its conditions. Problematics is a way to follow actualized solutions back to their virtual problem.  

This section explored Deleuze’s (1995) definition of a problem, of a problematic, and the 

immanent nature of problems and the importance of their conditions. Not only was Deleuze and 

Guattari’s (1977) concern for problematics evident in Anti-Oedipus, it went on to describe the 

role of the proposition in shaping the definition of ‘science’ in What Is Philosophy? (1994). 

Problematization is important for thinking about and through ‘science’ because it provides a 

means of orienting analyses of patterns and practices, like those of software engineering, not 

around a specific product, e.g., software, but through a broad array of activities and products. 

Problematization is at the root of discovering and exploring a scientific discipline’s orientation to 

the world, its propositional encounters.  

 

Problem-Orientation 

This section builds on the last by emphasizing problem-orientation, which is a mode of 

inquiry proceeding from problematics that is evident in software engineering. This section 

describes how problem orientations emerge from a problem’s material and experiential 

encounters with the world, which are propositional in nature (a concept defined in the next 

section). These encounters, in turn, describe how problems can orient agents toward solutions as 
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a negotiation of their conditions, and how problematics can give rise to the organization of a set 

of practices designed to overcome their conditions and solve their problems. This provides the 

basis for the conceptualization of a sociotechnical regime, and the role of problematics for those 

regimes. It begins by offering an example of how problems operate at different levels, 

demonstrating the importance of both Alan Turing’s and Konrad Zuse’s early concepts of 

general computation. Proceeding from a definition of ‘problem,’ it develops the idea of problem 

orientation by examining the ways in which Deleuze’s theory relates to common software 

engineering practices. Problem orientation allows source code to be de-fetishized by recognizing 

that it is always generated in response to a given problem according to patterns and practices that 

exist because of the immanent, true problem. Problem orientation is a way of explaining how 

problematics organize the social and technical practices used to produce orders of knowledge—

regimes--that generate solutions. Further, problem orientation allows for the delineation of true, 

‘virtual’ problems, and ‘given’ problems, which arise from a state of affairs. This delineation 

provides a mechanism for describing how, for human agents at least, problematics begin 

organizing their solutions around regimes vested with social and technical practices, 

epistemologies, and ontological commitments.  

Problems operate at multiple levels. Deleuze (1994) distinguished true problems from 

false ones, which differ in that false problems tend to be ‘given’ problems: while an engineer at 

Facebook was given the problem of capturing and recording a user’s mouse movements 

efficiently, the ‘true’ problem might relate to the monetization of user attention. When digital 

computation became feasible, the problem of an ‘instruction’ was tied to an expression of a 

discrete numerical system, i.e., binary; what allowed ‘computation’ to move beyond specific 

tasks and into generality, capable of solving many things? Even if Alan Turing’s tape described 
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to its machine how to perform the instruction, the machine still had to mechanistically perform 

properly ordered operations: because of the tape, it knew how to distinguish one operation from 

another, but the actualization of the machine had to solve another problem. In 1937, the German 

mechanical engineer Konrad Zuse recognized that, for a general computer, data and code are the 

same thing: if the conditions are a discrete set of electrical registers, the problem might be one of 

expressing and distinguishing ‘data’ and ‘code’ numerically (a topic further explored in Chapter 

3). How does one operate on the other, and how does a universal computer distinguish them at 

the level of electrical impulses?  

The nature of a problem affects the ways it is solved, which, on the face of it, is an 

obvious statement. However, the nature of problems has interesting ontological and 

epistemological considerations in Deleuze’s philosophy because of his materialist orientation. 

For Deleuze, problems are immanent to their conditions, residing within them. Before diving into 

Deleuze’s perspective, the lexical definition of ‘problem’ is worth revisiting: according to the 

Oxford Dictionaries, a problem is principally two things: “a matter or situation regarded as 

unwelcome or harmful and needing to be dealt with and overcome”; or “an inquiry starting from 

given conditions to investigate or demonstrate a fact, result, or law” (2017). Of the 32 synonyms 

Oxford Dictionaries lists, the common comportments are “difficulty, trouble, worry, 

complication”; the term itself, ‘problem,’ originated in late Middle English, and “originally 

[denoted] a riddle or a question for academic discussion.” Presently, ‘riddle,’ in the academic 

sense, is nowhere to be seen in Oxford’s list of synonyms for ‘problem,’ which is interesting in 

that problems are both calamity and equation in a Deleuzian sense. As May (2005) summarizes, 

Deleuzian “[problems are] an open field in which a variety of solutions may take place,” where 

“[it] is the problems rather than the solutions that are primary” (p. 84). In this mode, solutions are 
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immanent to problems, and problems are immanent to a milieu; solutions represent a type of 

difference and repetition—or iteration—on a problem. “[Solutions] are a particular form of 

exhaustion,” while problems “are inexhaustible” (May, 2005, p. 85), implying that, for Deleuze, 

solutions are actualizations, while problems are virtual, in the sense that they are fields of 

potential. Ontologically, this implies that that solutions are expressed as localizations, 

individuated by the differences of their repeated encounters with a given problem. So, in the 

‘given,’ or false sense of the problem Deleuze described, there is an agent that must produce a 

solution that satisfies a set of requirements; in the ‘true’ sense, the problem is immanent to the 

milieu in which it is embedded, reflexive of that milieu, and open to new solutions. In this way, 

solutions become a way of knowing a problem (or an aspect of a problem) by providing a sense 

of it. 

The confounding strength of Deleuzian problems is their immanence and virtualness, 

because it is easy to conceptualize them in terms of transcendence, which is inappropriate. 

Problems are fundamentally comprised of visible and invisible elements, i.e., actual factors that 

can be enumerated and therefore anticipated, and virtual factors which remain to be discovered. 

Deleuze (1994) stated that “[problems] are tests and selections” (p. 162), which is of 

fundamental import, because it allows solutions to become a type of probing for a problematic. 

Osborne’s (2003) description of Bergson’s problem of the eye described it as a solution for 

“certain problems of action” that was also “capable of responding to future problems” which 

cannot be known until they are encountered (p. 6); as Deleuze’s perspective on problems was 

influenced by Bergson, what distinguishes it most from traditional dialectical problematics is his 

emphasis on processual, continuous encounters between a problem and a locality (Deleuze, 

1990; 1994; May, 2005; Koopman, 2013). Deleuze used swimming to illustrate a problem’s 
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encounter with an event’s conditions: “[to] learn to swim is to conjugate the distinctive points of 

our bodies with the singular points of the objective Idea in order to form a problematic field” 

(1994, p. 165). Learning to swim is a means of interrogating the “problem projected” by the 

encounter between it and a body; it is one actualized solution to “the complex theme which does 

not allow itself to be reduced to any propositional thesis” (Deleuze, 1990, p. 122). A problem is 

an expression of the virtual by being fields of potential, and changes according to the conditions 

from which it is immanent; when a problem is identified, it is determined by “means of an 

appropriate process … in space and time” which, “as it is determined, … determines the 

solutions in which it persists” (p. 121). Ultimately, a solution is the “synthesis of the problem 

with its conditions” which “engenders propositions, their dimensions, and their correlates” (p. 

121). A solution is one actualization of a problem at a specific point in space and time, and 

problematics describe a way of thinking about how the repeated encounters between a problem 

and its conditions lead to new solutions. 

Chaos (or the virtual, the space of possibilities or the problematic field) ensures that no 

problem is solved with finality, which is the major contribution Deleuze and Guattari (1994) 

made in their final collaboration. By interpreting the working differences of science and 

philosophy as fundamentally one of their orientation toward chaos, e.g., the planes of reference 

and immanence, of sieves stretched across the virtual operating at different speeds, Deleuze and 

Guattari folded the nomadic into any actualized solution. It is a difference of ‘solving’ rather 

than ‘solved’: in Software Engineering, for instance, a problem must often be ‘re-solved’ due to 

a phenomenon called ‘scope creep.’ Scope is a term used to describe the amount of work that 

must be done to meet the design requirements of an artefact; creep is a verb used to describe an 

effect on the work performed in accordance with a design. At some point, a design is “finalized,” 
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and work begins. Scope creep is a pejorative term for a change in design that happens after work 

has begun: if the design changes, the problems of today may be entirely different from the 

problems of yesterday, which can lead to work being thrown out. However, scope creep is a 

natural product of a problem being synthesized with “its conditions” (Deleuze, 1990, p. 121). A 

change in design can be, like in Brooks (1995) case of the many starts and stops of IBM’s 

OS/360 platform, the result of discarding ‘false’ problems after a series of “tests and selections” 

(Deleuze, 1994, p. 162) from the ‘true’: 

The only way to take talk of ‘true and false problems’ seriously is in terms of a 

production of the true and the false by means of problems, and in proportion to their 

sense. … Not only is sense ideal, but problems are Ideas themselves. (Deleuze, 1994, p. 

162) 

Code produced for a software engineering effort is constantly ‘re-factored,’ reconciled, and 

rewritten in response to a change in the scope that determines the extent to which software 

‘solves’ its given problem. As Kohanski (2000) states, “[a] designer will try to anticipate … 

midstream changes and build in the flexibility to handle them, but no one can anticipate 

everything,” explaining that some “code will be bent to fit the new requirements and some will 

be left alone” (p. 176). Work toward a software engineering solution is a processual thing, a 

constant refitting of connections between old understandings and new requirements. Software 

ontologies emphasize dynamism, in the sense that new versions replace old versions in major 

and minor ways: a product may be rewritten from scratch, have new features patched into it, or 

receive maintenance releases to fix bugs. At some point, however, a solution must be measured 

in terms of its problem: “[did] we really want it to do the things we designed it to do” (p. 175)? 

How do we know that what we designed has any relation to the problem instantiating the process 
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of its implementation? Rather than delineate by ‘true’ and ‘false’ problems, Deleuze 

distinguished them by ‘virtual’ and ‘given,’ a distinction that provides a means to identify and 

relate one or more solutions to the nature of their problem. A given problem is specific to its set 

of conditions, which may relate to a specific feature in an application; the underlying problem 

that the broader software application attempts to ‘solve’ may relate to a true problem, which 

because of its virtuality, invites many solutions by always being open to new actualizations.  

By refusing to treat problems as true or false, Deleuze (1994, 1990) argued that ‘true’ or 

‘false’ were a matter of a solution’s production: there are true or false solutions. Rather, the 

significance of ‘virtual’ and ‘given’ then is one of perspective: a solution becomes measured by 

the degree to “which propositions correspond” to “particular responses” within a locality (1990, 

pp. 120-122). Solutions are a way of knowing a problem, and problems are both a way of 

knowing an impetus for being, for looking at solutions as expressions of a virtual or given scope 

of conditions. As stated earlier, “solutions are engendered at precisely the same time that the 

problem determines itself” (p. 121); how a solution is designed, as Kohanski (2000) lamented, 

allows one to parse its manifestation (e.g., software) from the problem (or problems) it is 

designed to solve. This delineation provides a means for locating practices of reading source 

code or analyzing software itself on the side of ‘given’ problems, while examining the processes 

of its design and implementation as attempts to actualize an aspect of a ‘virtual’ problem.  

It is the difference between attempting to read meaning out of a variable name, which as a 

‘given’ issue may have little to no bearing on the virtual purpose of the software itself, and the 

ways in which software systems mobilize psychological considerations to subjectivate users for 

purposes of monetization, which is a ‘virtual’ problem that continues to find new actualizations 

because of capitalism. In this way, the many types and layers of ‘given’ problems, from a 
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variable name, a class method for tracking mouse movements, to a computer language’s 

compiler design, and a computer architecture’s affordances, can be seen as ‘givens’ in the scope 

of a virtual problem’s continual engagement with its conditions. The problems of computation 

are virtual, while those of implementation are givens. Alan Turing’s argument for a Universal 

Machine straddled a line between the inexhaustibility of a problem in its virtuality and the 

necessity of imagining its solution in terms of the conditions given to him. The point of contact 

between ‘virtual’ problems and their actualizations are systems of knowledges and processes that 

are designed to interpret and implement them, called sociotechnical regimes. 

This section has described how problem orientations not only emerge from a problem’s material 

and experiential encounters with the world but produce the sociotechnical regimes by which 

those problems are solved, be it the problem of the ‘eye’ to see what is necessary to be seen, or a 

Universal Machine to account for the necessity to generalize a computational solution across any 

set of numbers. Problematics and problem-orientation describe how a discipline can be organized 

around the principles and practices focused on solving them. The next section outlines and 

explores the Deleuze and Guattarian (1995, 1987) basis for considering a discipline as a distinct 

set of practices which navigate the ‘virtual’ and ‘given’ qualities of a proposition to produce their 

solutions.  

 

Sociotechnical Regimes 

This section explains what sociotechnical regimes are by connecting the previous 

sections’ discussion of problematics to Deleuze and Guattarian (1995, 1987) concepts. 

Sociotechnical regimes describe how and why propositions are answered in the ways that they 

are, which allows a product like software to be seen as less for its programming or source code, 
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and more for its processual design, development, and delivery. Software engineering’s ‘virtual’ 

problem describes circumstances in which ‘problems are solved computationally’ are a smooth 

space because it is open and continuous and chaotic; it is only through its solving, e.g., by 

producing software, that its solutions can be seen as a process by which many ‘given’ problems 

are solved at many material levels, through many social and machinic negotiations. It is 

important to understand software as a product of a regime and not as ‘programming’ or ‘source 

code’ alone. Software engineers are more than just programmers, and programmers do more than 

just program. Engineers of any kind represent an intersection between social and machinic 

relations, and work to translate problems from social domains into technical ones, and vice versa. 

Software is a peculiar response to propositions that ask to solve problems computationally; 

software engineering, as a sociotechnical regime, describes the efforts and organizing principles 

that go into a proposition’s response. The theories of Deleuze and Guattari, singularly and 

conjunctively, are suited for a description of software engineering because of the flexibility of 

computation’s underlying material nature: software engineering is a harness on a peculiar type of 

chaos, which is a convenient way of explaining why software has historically been unreliable 

and unpredictable.  

 

What is a Sociotechnical Regime? 

Deleuze and Guattari recognized the interplay of axiomatics, structures, and modes to 

combat immanence, disorder, and chaos: “[what] had interested Deleuze from the beginning was 

the ways in which order comes to be maintained in the world despite [an] immanent threat 

always knocking at the door” (Arnott & DePaul University, 1999, p. 50). Deleuze and Guattari 

were accounting for science’s entanglement with social and cultural factors in their discussion of 
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propositions and functions—regimes live in a constant state of disruption. The plane of reference 

only has the appearance of stability; it is within the self-interest of a technical regime to produce 

consistency. The concept of the sociotechnical regime is a way to describe consistency in the 

face of chaos. Sociotechnical regimes are a way to describe the processual relations that lead to 

the production of a scientific plane of reference, which allows the regime—as an organized 

entity and community of practice—to explain and solve their motivating problematics. Regimes 

relate specific social and machinic relations to propositions and functions, which both identify 

them (e.g., ‘Computer Science,’ ‘mechanical engineering,’ ‘civil engineering’) and cause them to 

relate to broader, externally motivating factors in specific ways. Regimes operate and perpetuate 

themselves by being perpetually and processually engaged assemblages of human and technical 

agents that maintain their internal order by modulating their structures and modes in response to 

internal disruptions and external motivations. Order in a sociotechnical regime is enforced so that 

subjects are produced according to the axiomatics of their episteme; order flows from the 

axiomatics used to employ the functions and propositions encoded on their disciplinary plane of 

reference. This section offers a top-down explanation of the sociotechnical regime concept, 

defining a plane of reference, a function, and a proposition. 

Sociotechnical regimes are identities oriented around a volatile area of a scientific plane 

of reference. In What is Philosophy?, Deleuze and Guattari (1994) work to delineate philosophy, 

and what philosophy does, from what the arts and sciences do. Each “thought-form” (Arnott, 

1999, p. 49)—science, philosophy, and art, a topic not taken up by this dissertation—organizes 

what it knows and uses on planes: science uses a plane of reference; philosophy uses a plane of 

immanence. The task of Deleuze and Guattari’s (1994) last collaboration is relevant to 

sociotechnical regimes, not only by pulling apart the disciplines along lines of production to 
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show how each discipline performs its work, but by arguing that the knowledge and ontologies 

embedded in a plane of reference or immanence are used to make sense of chaos. A plane of 

reference is defined as “a fantastic slowing down, and it is by slowing down that matter, as well 

as the scientific thought able to penetrate it with propositions, is actualized” (p. 118). Functions 

are “a Slow-motion,” which direct affect matter. By slowing things down, a plane of reference 

imposes “limits or borders” through which science “confronts chaos” (p. 119). Propositions are a 

form of “reference” which is a “relation to a state of affairs to the system,” which serves to relate 

functions to a problem or task (p. 122), which is better explained as, “[the] object of science is 

not concepts but rather functions that are presented as propositions in discursive systems” 

(p.117). Unpacked, this means that propositions relate functions to a question or task. Philosophy 

relies on infinite speed so that thought can traverse and find relations between concepts across a 

plane of consistency: concepts must be free to relate to each other. Science, on the other hand, 

first relies on a “set of coordinates” to which a “relationship” of a variable forms an 

“endoreference”: there is quantification at the core of a plane of reference that refers back to an 

immanent reality. Despite the work and products of philosophy and science being different, 

Arnott’s (1999) summary of Deleuze and Guattari’s work concluded that “any attempt to blur the 

boundaries” between the different thought-forms of science, philosophy, and art “is to be 

resisted,” so that instead scholars might look at the ways they interfere with each other (p. 49). 

Philosophy creates and works with concepts; the arts create figures using prefects and affects; 

and the sciences generate prospects using propositions and functions (p. 24). Science does not 

create concepts; philosophy does not create functions and propositions. But, they can meet 

somewhere in the middle, when the products of their efforts contact each other in the world. Put 

another way: 
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philosophy explores the plane of immanence composed of constellations of constitutive 

forces that can be abstracted from bodies and states of affairs. It thus maps the range of 

connections a thing is capable of, its “becomings” or “affects.” Science, on the other 

hand, explores the concretization of these forces into bodies and states of affairs, tracking 

the behavior of things in relation to already constituted things in a certain delimited 

region of space and time (the “plane of reference”). (Smith & Protevi, 2015) 

The adjoining concepts between philosophy and science of bodies, ‘becomings,’ and states of 

affairs, are crucial to developing an understanding of how problematization orients 

sociotechnical regimes, and why philosophy—the discovery of connections between things—can 

be a method for describing how regimes come to be and perpetuate themselves. Isabelle Stengers 

(2005) focused on how concepts and functions might intersect in What is Philosophy?, 

concluding that they do so “only after each has achieved its own specific self-fulfillment” (p. 

151), noting that Deleuze and Guattari (1994) stated that intersections occur “in their full 

maturity, and not in the process of their constitution” (p. 161). Such thinking implies that 

concepts cannot develop a function, and vice versa; concepts have nothing to add to the creation 

of a function, because concepts do not belong in the domain of the function. Similarly, science 

attempting to create concepts by describing them with functions is inappropriate. The problem-

oriented sociotechnical regime is a conceptual framework that encapsulates the products of a 

scientific discipline’s efforts to produce functions to solve problems, while recognizing that 

those problems constitute the basis of the regime’s existence.  

Separating concepts from functions traces endoreferences, external points of contact 

between the things a regime creates and the principles and practices behind their creation, which 

for the sciences are propositions. Sociotechnical regimes describe and explain how, in the case of 
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software engineering, software is produced, how software engineering is different than Computer 

Science, and why programming and source code are one function of many. By the time the first 

chapter of What is Philosophy? concludes, the authors identify an enfoldment of philosophy into 

science, and unfurl it over the course of their project. This enfoldment is evidenced by their 

assertions that while concepts are for philosophers alone to create, they are incorrectly credited 

to the sciences, e.g., “[the] power of the concept is attributed to science, the concept being 

defined by the creative methods of science and measured against science” (p. 33). But as 

Deleuze and Guattari argued, the opposite is needed: it is necessary to show why an enfoldment 

of one into the other is wrong. A philosophy focused on concepts, of their connections and 

becomings, is itself a method to understand science and its discursivity by demonstrating the 

operations of functions based on relations of social and machinic relations. Sociotechnical 

regimes define an area of a plane of reference, of how a peculiar set of social and machinic 

relations works to solve an underlying problematic. The concept can parse the liminal areas 

between disciplines, like Computer Science and software engineering, accounting for both the 

differences and remaining connections, while exposing areas the functions and propositions of a 

discipline can become something else in relation to the concepts of media studies and other 

philosophical disciplines. 

Propositions are important to understand because they are, in many ways, an almost 

dialogic process by which a sociotechnical regime produces itself. Sociotechnical regimes 

initially organize themselves around problematic, and then produce themselves if their solutions 

are valued by outsiders: think, for instance, of the technical identities that no longer exist. 

Propositions are interpreted by a sociotechnical regime in specific ways, ways that are not unlike 

what Foucault described as a “regime of truth or error” (2003, p. 164). Essentially, regimes are a 
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type of “grid of intelligibility” that defines the “division between truth and error.” A 

sociotechnical regime determines the principles for how the ‘correctness’ of an algorithm can be 

measured in conjunction with a problem and determines how that solution can be valid or invalid 

within the scope of its actualization. What delineates a technical regime from the broader 

definitions of ‘discursive system’ or ‘regime of truth or error’ is outlined in the specificity of an 

assertion Foucault made while explaining how processes of actualization came to be discernable 

as systems: at some point, “[a] corpus of knowledge, techniques, [and] ‘scientific’ discourses” 

were “formed and [became] entangled with the practice of the power to punish” (1995, p. 23). A 

sociotechnical regime internally regulates its truth-values and its methods of growing to 

encapsulate new functions, while being used by external forces to move the present into the 

actual: while regimes are governed by their orienting problematics, they come into being and 

persist because the solutions to that problematic has value. 

Sociotechnical regimes have certain ways of interpreting and acting on the problematics 

that lead to their creation, in the ways they relate propositions to functions, problems to 

solutions. They act like identities for their agents and delimit the ways those agents relate to 

outsiders. Where Deleuze and Guattari use ‘discursive system’ to broadly describe systems of 

actualization, it is helpful to revisit Foucault’s (1982) concept of the ‘episteme,’ because it is 

helpful for reinforcing the idea of a sociotechnical regime as an organized set of social and 

machinic relations, oriented around a problematic. He wrote that an 

episteme is not a form of knowledge (connaissance) or type of rationality which, crossing 

the boundaries of the most varied sciences, manifests the sovereign unity of a subject, a 

spirit, or a period; it is the totality of relations that can be discovered, for a given period, 
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between the sciences when one analyses them at the level of discursive regularities. (p. 

191) 

An episteme is not knowledge itself but is rather that through which something emerges, and 

Deleuze and Guattari’s (1994) argument that the thought-forms are principally ways to account 

for chaos are crucial for understanding how sociotechnical regimes flow from problem-

orientation. While regimes are in many ways self-organizing beyond the initial conditions that 

brought the confluence of factors that would comprise them, they are only perpetuated if they 

can successfully modulate themselves in response to immanent disruptions, i.e., adapting to 

chaotic and changing circumstances. The obvious way this adaptation is performed is through the 

production of actualizations which are valued by external motivators. Foucault’s concept of 

‘episteme’ becomes increasingly valuable for thinking through the implications of Deleuze and 

Guattari’s thought-forms: why, for example, did medical sciences reorient themselves in the span 

of 20-years, virtually overturning (or reorganizing) their prior plane of reference? A response to 

this question can be found in discussing assertions made by Levy-Leblond which Guattari (1984) 

uses to frame relationships of subject positions (i.e., “agents of change”) that are modified by 

degrees and intensities of translation of their position within a totality (or assemblage), 

demonstrating the principles informing the usefulness of mathematics and its practitioners. 

Mathematics “may have a relationship of application,” such that it is used by disciplines like 

biology or chemistry to quantify values; it “may have a relationship of constitution or 

production” (emphasis maintained, p. 122). Application and production are actions which 

describe how sociotechnical regimes operate, in that the corpus of their techniques and 

knowledge are practiced (applied), so that something specifically valuable is actualized 

(produced). Agents of a sociotechnical regime can be thought of, as Foucault (1995) argued, an 
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“element in which … the effects of a certain type of power and the reference of a certain type of 

knowledge” are produced (p. 29). In turn, they produce and further “the machinery by which the 

power relations [of their formation] give rise to a possible corpus of knowledge, and knowledge 

extends and reinforces the effects of this power.” Essentially, in response to being ‘useful,’ a 

technical regime produces its internal agents of change, while being, in and of itself, an agent of 

change in constant interaction with external agents.  

Functions are a sociotechnical regime’s ability to operate on the real, in the sense that the 

real is materiality. Sociotechnical regimes solve problems according to the limits and affordances 

of the functions and propositions encoded on their area of their scientific plane of reference. At 

the root of any problematic lies an observer, who not only notices its existence (c.f. Koopman, 

2007), but has a peculiar set of discursive systems designed to “solve” it, to probe it, to 

enumerate its components and implications, to begin to realize its contingencies, and in the case 

of software engineering, to begin the task of actualizing solutions for the problem by producing 

concrete responses to the virtual problem of computation. The owner’s discursive system 

determines what is discoverable and how it will be dealt with. Deleuze and Guattari (1994) cite 

Foucault’s definition of the ‘actual’ in explaining how things come to be, how they become. 

Bodies are somehow produced as arrangements (concrete assemblages) that are the “difference 

between the present and the actual” (p. 112); bodies are “in the process of becoming,” and are 

actualizing in some way. The difference between the actual and the present, then, is that by 

becoming actual, a body ceases to be ‘in the present,’ it is “what already we are ceasing to be.” 

In this way, Deleuze and Guattari argue that Foucault believes “the object of philosophy is not to 

contemplate the eternal or to reflect on history but to diagnose our actual becomings.” They 

further describe a system in which concepts are valued for their own creation and for the 
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discovery of their pure events, explaining how concepts form connections to other conceptual 

milieus (which are diagrammatic) on the plane of immanence, and why this recognition matters 

(p. 31; p. 36). Concepts are brought into being according to a philosophical episteme; 

propositions and functions, conversely, are brought into being according to a scientific episteme. 

Philosophic problems are under the same constraints as scientific problems, in that, be it by plane 

of immanence or plane of reference, the means of identifying a problem within its conditions are 

shaped and delimited by their limits of their respective plane. Perspective, the ability to see the 

conditions in which a problem emerges, is organized by a discipline’s plane. 

While functions are created, revised, and discarded by a sociotechnical regime when they 

gain new insights into the material nature of a problem, regimes need new propositions to create, 

revise, and discard functions. Because of their orienting problems, sociotechnical regimes have 

relatively stable identities and idiosyncratic ways of problem solving, but they do change over 

time. The last point that Foucault made which is relevant for epistemes is that “the rhythm of 

transformation doesn’t follow the smooth, continual schemas of development which are normally 

accepted” (Foucault, “Truth and Power” in Foucault & Gordon, 1980, p. 113), which is 

important to keep in mind, because science does not always follow a linear progression. Regimes 

adapt and change as the conditions of their problem are better understood, expanded to 

incorporate new insights, or limited for the same reasons. This is where the concepts of Deleuze 

and Guattari (WIP, TP, AO) are particularly suited to producing a type of history that allows 

observers to keep track of the immanent social and machinic relations encapsulated by a 

problem-oriented sociotechnical regime: a plane of reference comprised of functions designed to 

respond to propositions describe a plausible way the sciences relate to the world. 
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How does a Sociotechnical Regime work? 

What distinguishes sociotechnical regimes from other ideas used to describe disciplines, 

like communities of practice, discourse community, or Kuhnian paradigms, is the inherently 

open-ended nature of Deleuze and Guattari’s thinking, which focused on the always ‘becoming’ 

nature of the relations and movements of immanent relations. As Kuhn (1996) might explain, the 

history underlying the discipline of Computer Science (CS), as the Association for Computing 

Machinery (ACM) would desire it, has “been drawn, even by [the] scientists themselves, mainly 

from the study of finished scientific achievements” (Kuhn, 1996, p. 1). Reliance on such a 

history, despite its intent to be “persuasive and pedagogic,” fails to adequately represent a 

discipline’s attempt to capture “the enterprise that produced” those achievements. Consensus and 

success are emphasized, rather than failure or controversy. By discarding those adjacent factors, 

the human and material trends that detract from the sweeping (and linear) narrative tend to be 

overlooked or ignored, such that traditional historical methods not only have “difficulties in 

isolating individual inventions and discoveries,” but give reason “for profound doubts about the 

cumulative process through which … individual contributions to science were thought to have 

been compounded” (p. 3). A Deleuze and Guattarian perspective seems tailor-made for capturing 

and accounting for the exclusions a discipline makes as it organizes its “commitment[s]” around 

an “apparent consensus” about its “normal science,” which are predicated on “one or more 

scientific achievements” (Kuhn, 1996, pp. 10-11). The concept of the sociotechnical regime 

draws together Deleuze and Guattari’s (1994, 1987) concepts of the event, plateau, rhizome, 

smooth and striated spaces, and aforementioned plane of reference, propositions, functions, and 

problematics into a framework that undermines paradigmatic thinking by incorporating failure 

into its narrative, and difference rather than enfoldment, interference rather than autonomy.  
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Sociotechnical regimes offer a historical perspective on the development of a discipline, 

field, or area of technical practice. A crucial factor in Deleuze and Guattari’s (1994) thinking 

was their emphasis on historical effort, for there are no problems of science or of philosophy that 

are not historical, that are not driven in some way by contextual elements (c.f. “geophilosophy” 

and Nietzsche’s work to describe national characteristics, pp. 102-103), or by intrusions of a 

state of affairs upon an agent of change. Virtual problems are not ‘given to us’; rather, we work 

to discover the problem that is obfuscated and submerged by a state of affairs—it is in the 

problem’s transcendence of a milieu that problematology becomes an interdisciplinary concern. 

Thus, the work outlined in What is Philosophy? is significant: in some cases, the problems of 

science have answers in philosophy, and vice versa; problems are inflection points and intensive 

events representing points of opportunistic intersection between concepts and functions. The 

concept of ‘intelligence,’ for instance, is being pressed upon and availed by machine learning 

and artificial intelligence, but its problems traverse and ‘survey’ the planes of immanence and 

reference in much the same form. Problematics are the bridge that will demonstrate the 

differences and commonalities between disciplines while accounting for their organizing 

principles, which is how and why they do what they do. Problematics, for media theories of 

software, allow the processes and practices involved in the work of producing that software to be 

accounted for. 

 

Events 

At the root of any sociotechnical regime is a problematic encounter that lead to its 

organization, called events. Events represent a point in time where something happened and are 

the initial point for mapping where one regime ends, and another potentially begins. “Events are 
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ideal,” Deleuze (1990) explained: they are “ideational singularities which communicate in one 

and the same Event. They have therefore an eternal truth, and their time is never the present 

which realizes them and makes them exist” (p. 53). Meaning, they tend to happen and then be 

noticed as having happened. Two water-based examples from Deleuze’s (and Guattari’s) work 

serve to illustrate how a problem emerges through an agent’s encounter with an event: “[it] was 

at sea that smooth space was first subjugated and a model found for the laying-out and 

imposition of striated space, a model later put to use elsewhere” (emphasis added, Deleuze & 

Guattari, 1987, p. 480); and, “[to] learn to swim is to conjugate the distinctive points of our 

bodies with the singular points of the objective Idea in order to form a problematic field” 

(emphasis added, Deleuze, 1994, p. 165). Through an encounter between bodies, an 

understanding emerged that a problem existed. The problem, in the first example—the smooth 

space of oceanic water—emerged that drowning was a real consequence of being submerged by 

that encounter. Through repeated interactions, a model of buoyancy emerged, leading to the 

development of ‘new bodies,’ like boats and triremes, to striate the smooth space. The second 

example Deleuze (1994) offered demonstrates how problems are always immanent to encounters 

between bodies. The water-based examples provide a basis for understanding problematics as 

processual, in that the problem is repeatedly encountered and reflected upon while its conditions 

are explored and accounted for.  

The creation and maintenance of a sociotechnical regime can result from one or more 

events. Events are a point in time that mark a mode of thinking about a problematic. For 

example, one would be hard pressed to relate the event signified by the Sumerian abacus to the 

discipline of Computer Science, or the creation of numbers, which are fundamental to so many 

areas of knowledge. Martin Cambell-Kelly et. al’s (2014) popular history of the computer 
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focuses not on the creation of digits, or of writing and inscription technologies, but on how 

humans performed the work of creating logarithmic and trigonometric tables from the sixteenth-

century onward (pp. 3-5). Cambell-Kelly et. al demarcated some events from others by focusing 

on the relations of a sufficiently advanced form of mathematics—like actuary tables—to aid in 

the configuration of bodies for the purposes of seafaring. The problem of computation came 

about, in their view, when the need to “organize information processing on a large scale” became 

pressing (p. 3). At its onset, the problem of computation intersected with the practical need to aid 

ship-based navigation, which necessitated a set of social and machinic practices around 

computation, i.e., figuring numbers and probabilities, creating actuary tables, inscribing, storing, 

and recalling values, validating results, etc. An impetus in the sixteenth-century—an 

endoreference—began organizing a regime around a problem and its conditions. 

Events are revisited repeatedly, and a sociotechnical regime constantly revisits those 

events, even if it attempts to forget them (e.g., Kuhnian’s normal science). Deleuze and Guattari 

(1994) stated that “new concepts must relate to our problems, to our history, and above all, to our 

becomings” (p. 27), asking “[what] is the philosophical form of [a problem] of a particular 

time?” (pp. 27-28). Events represent a point in time where propositions ask for functions that can 

provide responses. If the functions to respond to an interposed and intrusive problem do not 

exist, either historically or within a state of affairs, they are created, if the conditions for the 

problem allow their immanent creation (p. 133). Cambell-Kelly et. al’s (2014) work moves 

quickly over centuries of human-computational labor practices, toward Charles Babbage’s 

efforts to finish the work begun by Baron Gaspard de Prony, a Frenchman who was tasked with 

automating the creation of actuary tables used for taxation and economic purposes during the 

French Revolution. Babbage acquired funding from the British government in 1823 to build the 
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Difference Engine and faced the daunting task of having to both design it, and “[develop] the 

technology to build it. Although the Difference Engine was conceptually simple, its design was 

mechanically complex” (p. 7). Although the Difference Engine was never fully realized, by 

struggling through the conditions of the problem of ‘automation’ for removing human labor from 

the task of computation, Babbage gained insights into a machine he called the Analytical Engine, 

which “would be capable of performing any calculation that a human could specify for it” (p. 8). 

This machine predates the paper Alan Turing published outlining the Universal Turing Machine 

by 102 years. Events are evidence that problems, for Deleuze and Guattari, operate at many 

levels and shape the conditions through which they are re-encountered.  

 

Plateaus and Rhizomes 

Plateaus represent a span of time progressing from one or more related events in which 

encounters with those events continue to affect the becoming of things. A sociotechnical regime 

can be thought of as a period of time leading from one or more related events encompassing 

“flows of varying speed and slowness” for humans that occur “alongside other planes of 

becoming,” such as “animals, machines, molecules and languages” (Colbrook, 2002, p. 66). 

Deleuze and Guattari (1987) explain that plateaus are “always in the middle, not at the beginning 

or the end,” and that a “rhizome is made of plateaus” (p. 21); further, “a ‘plateau’” is “any 

multiplicity connected to other multiplicities by superficial underground stems in such a way as 

to form or extend a rhizome (p. 22). Treated as a span of time, plateaus capture and group 

encounters leading to and from one or more related events. Plateaus, for sociotechnical regimes, 

represent a period of time around encounters with a problem; the use of the concept allows 

analyses of regimes to incorporate formative and tangential encounters to discover ways in 
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which a problem is revisited over time, despite changing conditions. As many plateaus can exist 

simultaneously and overlap—due to their rhizomatic properties, which will be explained 

shortly—plateaus are a mechanism that allows software engineering to be delineated from 

Computer Science. They encounter the same problems but diverge in the ways they interpret 

them and produce actualizations from those encounters; the problems of one regime can be the 

problems of another, but their values and methodologies can diverge for reasons discoverable in 

their state of affairs. 

If plateaus describe a period of time around an encounter with an event, rhizomes 

describe all of the social and machinic connections made between agents operating in that time 

span, around those events. Rhizomes, according to Deleuze and Guattari (1987), are not a root 

system in the traditional sense: they allow “any point” to connect to “any other point” (p. 21). 

These connections are significant for understanding sociotechnical regimes because they “bring 

into play very different regimes of signs, and even nonsign states” by capturing both signifying 

and asignifying connections, a process described in Chapter 4 of this dissertation. They work 

within a plateau because they are “composed not of units but of dimensions, or rather directions 

in motion,” having “neither beginning nor end, but always a middle (milieu) from which it grows 

and which it overspills.” Rhizomes both “[operate] by variation, expansion, conquest, capture, 

offshoots,” and have no hierarchy, no traditional taxonomy. They are significant because, from a 

historical perspective, they implicitly resist linearization—Kuhnian “normal science”—by 

decentering authority and traditional explanations. Rhizomes help a sociotechnical regime 

capture the states from which it emerged and the relations that give it a shape in respect to its 

problematics. 
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A point Deleuze and Guattari (1987) make about rhizomes would seem to contradict the 

‘organizing’ nature of sociotechnical regimes and their later focus on planes of reference: they 

state that rhizomes do not have an “organizing memory or central automaton,” and are rather a 

“circulation of states” (p. 21). The purpose of a rhizome is capture movement over time, hence 

the focus of plateaus as being in the middle, of rhizomes as expressions of a milieu. The point of 

the rhizome is that it is not a map in a cartographic sense, but a projection of a state that “is 

always detachable, connectible, reversible, modifiable, and has multiple entryways and exist and 

its own lines of flight.” Rhizomes do not contradict the concept of the plane of reference, 

because the openness of a rhizome, its lines of flight, capture meaningful innovation, where 

functions created and are connected to propositions to produce new actualizations that could not 

exist before. For example, the solutions afforded by the discovery of the “planar process” by 

Jean Hoerni in 1957 lead to a method of fabricating silicon transistors that is still used today. The 

planar method Hoerni developed increased the reliability of transistor-based designs, allowed 

transistors to be printed onto silicon wafers, and “made it easy to interconnect neighboring 

transistors on a wafer,” which had the effect of “rendering the competition’s offerings obsolete” 

(Riordan, 2007). Jean Hoerni was hired out of academia in 1956 by William Shockley, of the 

Shockley Semiconductor Laboratory to “do theoretical calculations of diffusion rates”; Shockley 

was shunned by other researchers at the time for “his pursuit of difficult R&D projects at the 

expense of useful, salable products.” While Hoerni was initially isolated from other employees, 

he “kept coming around and snooping in the lab in the main building,” which gave him “valuable 

insights into solid-state diffusion.” His connections and relations in Shockley’s lab would later 

give him the ability to follow a line of flight: “In a loose, fluid scrawl interspersed with three 

simple drawings,” he created “a revolutionary new way to fabricate transistors—unlike anything 
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ever before attempted.” In response to a proposition encapsulating issues of simplicity, 

reliability, predictability, and reproducibility—things vacuum tubes could not offer, and 

contemporary transistor production failed at—Hoerni’s innovation was the product of social and 

machinic relations that produced new functions for a proposition leading to “a manufacturing 

method rooted in the mechanical printing process originated by Johannes Gutenberg more than 

500 years ago.” A function on a plane of reference can connect to any proposition, despite of its 

distance from the contemporary milieu, and not only that, a proposition can use any function on 

any plane of reference. In this way, the benefit of thinking about disciplines in terms of 

sociotechnical regimes, as plateaus and rhizomes, is that it opens and blurs disciplinary 

boundaries by accounting for lateral movements and social pressures derived from their milieus, 

their state of affairs. 

 

Smooth and Striated Spaces 

Thinking about sociotechnical regimes in terms of plateaus and rhizomes firmly roots 

them in a milieu, as products of a problem’s conditions, as responses to many propositions, and 

as systems that produce idiosyncratic responses to those propositions. But to appreciate the 

products of a sociotechnical regime—like the aforementioned silicon transistors printed using 

planar methods in the spirit of a Gutenberg press, or the software ‘software engineering’ 

produces—it is necessary to understand how a regime intersects with its milieu, which explains 

how it makes sense of it, and how it interprets the propositions it encounters. Smooth and striated 

spaces are Deleuze and Guattarian (1987) concepts that describe how meaning is shaped by 

one’s perspective. “Striated space,” they explain, “is canopied by the sky as measure and by the 

measurable visual qualities derived from it” (p. 479). Meaning in striated space is construed by 
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reference, derived from a point’s position relative to other points from the perspective of an 

observer. Striated space is organized space. An example of striated space is evident in how 

computers represent numbers using binary, or base 2: one bit represents 2 values, 0 and 1; the 

combination of two bits represents a set of 4 values, 0, 1, 2, and 3 (00, 01, 10, 11); 8 bits 

represent 256 values, from 0 to 255 (starting at 00000000, ending at 11111111). The meaning of 

the combination of values is relative to the system that encode and decodes those values and is 

thus derived from that relation.  

To describe smooth spaces, Deleuze and Guattari (1987) use sound, because it is 

continuous, so when humans encounter it, they interpret it through their body, feeling it to 

understanding it. They state that “[the] smooth is a nomos, whereas the striated always has a 

logos, the octave, for example,” implying that music is both law and spirit (p. 478). Smooth 

space is “filled by events or haecceities,” and “is a space of affects, more than one of properties,” 

and is more often felt than seen. Smooth spaces are continuous and unorganized because, from 

the perspective of an observer, they cannot be separated into distinct elements or forces while 

they are being felt: they are not governed by points and measurements. An important example of 

smooth space Deleuze and Guattari use is the ocean, where currents flow in directions governed 

by vectors, rather than by specific points in space (pp. 478-482). The concepts of smooth and 

striated spaces recognize that meaning is relative to a perspective, and the significance of smooth 

and striated space for a sociotechnical regime is that meaning, at the intersection of a 

proposition, becomes a negotiation. Some propositions are not immediately compatible with a 

regime’s ways of becoming. When they are asked to consider a proposition that is more nomos 

than logos, they must work according to their methodologies to make sense of the proposition, 

and to effectively turn what could be the spirit of a proposition into the logos the regime employs 
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to discover and apply the proper functions for the expression of the proposition’s solution. The 

negotiation of smooth spaces at the level of the proposition connects sociotechnical regimes to 

Guattari’s (2011, 1984) mixed semiotics model, and is a topic explored in Chapter 4. What 

matters here is that Deleuze and Guattari’s (1987) concepts of space describe how sociotechnical 

regimes act relative to themselves and others. The point here is that smooth and striated spaces 

conceptually allow source code and programming to be considered as functions within a broader 

mechanism that values processes over product by recognizing that a broader logos connects the 

many aspects of a rhizomatic set of social and machinic relations together on a plateau that 

continues to be in the middle, in the milieu of society and culture.  

Sociotechnical regimes are a way to relate problematics to a discipline and its practices 

using Deleuze and Guattarian concepts. A problem is always, from Deleuze’s (1995) 

perspective, as an immanent product of its conditions, and problems change according to their 

milieus. For the purposes of this dissertation project, Deleuze and Guattari’s (1995; 1987) 

thinking provides a means for seeing software as another middle ground, as an immanent 

projection of social and machinic relations; source code and programming, rather than being a 

fixation of analysis, become one type of relation within a processual encounter between a 

problem and its conditions. Sociotechnical regime is an ongoing response to a problematic that is 

produced in response to a perspective on how solutions to the ‘true’ problem—like solving 

problems computationally, reliably, and predictably—are actualized. A regime is based on a 

plane of reference comprised of the functions it uses to affect the material world, in response to 

propositions from within or without its regime. Events describe a type of encounter that is 

noticed by someone or something; if an event is indicative of a solution—like Babbage’s 

Analytical Engine—it becomes possible to begin to describe its associated problem. From there, 
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the social and machinic relations of a sociotechnical regime begin to coagulate around a plateau, 

which is a period that is open to expansion, and the relations a plateau captures are organized 

rhizomatically, which is can be truncated, pruned, and connected to any other plateau as 

necessary, when new insights into the nature of its relations are discovered. In this way, Hoerni’s 

planar manufacturing method for silicon transistors expands the plateau of computation into 

Gutenberg’s domain. And significantly, sociotechnical regimes relate to their world through a 

navigation of smooth and striated spaces: if a problematic encompasses the continuous, smooth 

conditions of an analog encounter, the solution a sociotechnical regime like electrical 

engineering can produce, like a transducer, will striate an analog continuum into a series of 

discrete values. Smooth and striated spaces allow a regime’s encounter with a proposition to 

account for what is lost and gained in the negotiation, which also identifies a regime’s principle 

point of contact with the world. Sociotechnical regimes conceptually describe how and why 

propositions are answered in the ways that they are, which allows a product like software to be 

seen as less than its programming or source code, and more for its processual design, 

development, delivery, maintenance, and abandonment. 

 

Describing Software Engineering as a Sociotechnical Regime. 

Software has always been open-ended, because it is always open to change if its source 

code can be accessed, modified, recompiled, and deployed, and current development 

methodologies, like DevOps and Continuous Delivery emphasize this perspective. As the next 

chapter will demonstrate, software has always been ‘continuous,’ because it has—generally—

never entirely worked perfectly. The concept of the problem-oriented sociotechnical regime 

argues for an analytical emphasis that looks less at the products they produce and more on 



www.manaraa.com

  74 

 

problems which they continually engage. For software engineering, this means looking at the 

problem’s software projects are designed to solve, and the processes mobilized to solve them. 

For media studies scholarship, this means devaluing the concept of ‘programmer’ in favor of 

‘software development.’ Source code and software are treated as a fetish by media studies 

scholars because they are typically viewed as the most important part of ‘software’: 

programming is related to writing, which produces interpretations where source code is a 

readable, interpretable text, therefore producing narratives where the programmer is an author. 

This view fetishizes ‘programming’ by hiding and obscuring the many processes and practices, 

both social and machinic, that bring software to life; programming is effectively a fetish in media 

studies because it acts as a stand-in for the engineering and communicative practices involved in 

software’s production. Because of this fetishism, the ‘programmer’ has effectively become a 

pastiche for scholarship examining software, which treats it as an overdetermined given. This 

overdetermination effectively black-boxes the many practices employed in software 

development, by software engineers, and perpetuates the mythologizing of the ‘lone author’ 

trope associated with the programmer identity. Engaging with problematics at the level of a 

regime allows programming to become one of many forms of an encounter with a problem 

within its conditions, which white-boxes software development by de-fetishizing the 

programmer, allowing software to be an attempt to solve a problem that itself emerged from a set 

of conditions, through a manifold of social and machinic relations, a milieu, necessitating the 

attempt. Once the programmer is no longer treated as a stand-in for all thing’s software related, 

programmers and source code become less important than the problems and processes used to 

address problems emerging from a state of affairs. 
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Deleuze and Guattari’s concepts, collaboratively and individually, are distinctly suited to 

considering software engineering because ‘software engineering’ is now and has historically 

been a set of practices and relations giving rise to a kind of software that is always becoming. A 

brief look at Software Development Life Cycles (SDLC) like waterfall or agile, or Software 

Testing Life Cycles (STLC) shows that many processes and agents feed into the development, 

delivery, and maintenance of software products. For example, as programmers are tasked by 

project managers with ‘given’ problems, the most effective STLC practices have testers working 

alongside those programmers. As Gerald D. Everett and Raymond McLeod (2007) state: 

Managers and executives of companies that develop computer software have perpetuated 

the myth that quality can be tested into a software product at the end of the development 

cycle. Quality in this context usually means software that exhibits zero defects when used 

by a customer. It is an expedient myth from a business planning perspective, but it 

ignores two truths: (1) Testing must be started as early as possible in the software 

development process to have the greatest positive impact on the quality of the product 

and (2) You can not [sic] test in quality ... period! (p. 13) 

The argument Everett & McLeod make for testing alongside active development is evidenced in 

an axiom posited by Barry Boehm and Victor R. Basili called the “Rule of Exponentially 

Increasing Costs to Correct New Software” (p. 14). Essentially, before software is actively 

programmed, it is designed and documented. Checking for errors in the design documents before 

development work commences costs less than fixing an error in those documents after work has 

commenced. The same applies to active development: testing for errors and fixing them while a 

software product is being developed costs less than fixing errors after a product is delivered. 

Fixing errors in deployed software costs exponentially more than fixing errors during the 
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development process. The reasoning behind this is that errors in delivered and deployed software 

might only become evident after a long period of time: “the cost of defect correction must also 

include diagnosis at a distance, package level correction, and the delivery of the correction fixes” 

(p. 15). Programmers have to forensically step into a project they may have ceased working on 

months ago and reproduce and fix that error while hoping no new errors are produced by their 

fix. Working with testers can reduce the likelihood that errors will exist in the software 

deliverable. Even a brief look at an STLC demonstrates how a programmer’s ‘authorship’ is only 

as good as the way their ‘given’ problem is articulated to them, and even in perfect conditions, 

only as good as their technical ability to solve it within the practices imparted by their 

sociotechnical regime. The practices encompassed by SDLC methodologies and STLC patterns 

attempt to reduce the likelihood that a problem posed to a project manager and their technical 

writing staff is misunderstood. Software development, for its continuous nature, produces 

software that is in the middle—kicked off by an event, spanning a plateau, forming relations to 

users and systems rhizomatically—while being actively developed, and lingers in a milieu even 

after it is abandoned, influencing other projects and design decisions decades later. The problem-

oriented sociotechnical regime uses Deleuze and Guattari’s concepts to capture the multiplicities 

of workers and practices at play in software development.   

This chapter has outlined the concepts that will be used to produce a historical analysis of 

the events and relations leading to the creation of software engineering as a discipline that is 

similar to, but distinct from, Computer Science. The next chapter describes software engineering 

as its own problem-oriented sociotechnical regime, examining the trends leading to its formal 

emergence in 1968. The chapter examines the events and plateaus of early software, the 

formalization of Computer Science as an academic discipline, the role labor practices played in 
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shaping the ‘software engineer’ identity, and the development of software engineering as a 

deliberate polemic designed to formalize the problem-solving labor of computation while 

challenging its perceived immateriality. The production of a history of software engineering 

honors the assertions Deleuze and Guattari (1994) made when they stated that “new concepts 

must relate to our problems, to our history, and above all, to our becomings” (p. 27). The history 

of software engineering’s inception will demonstrate how the ‘programmer’ and source code 

have long been fetishized and black-boxed by parallel practices, and how the concept of the 

sociotechnical regime white boxes ‘programmatic authorship’ and source code in favor of the 

orienting influences of problematics. 
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Chapter 3: Tracing the Emergence of Software Engineering as a Sociotechnical Regime 

[It] appears that the whole of conditions which enable a finite machine to make 

calculations of unlimited extent are fulfilled in the Analytical Engine. ... I have converted 

the infinity of space, which was required by the conditions of the problem, into the 

infinity of time. (Charles Babbage qtd in Randell, 1984, p. 8) 

 

This chapter mobilizes the analytical framework proposed in Chapter 2 by interpreting 

‘software engineering’ as a sociotechnical regime, which highlights its distinctness from its 

traditional enveloping by ‘Computer Science.’ This chapter demonstrates how a Deleuze and 

Guattarian examination of ‘software engineering’ shows it to be its own type of discipline. 

Software engineering resides in the thought-form of science, and necessitates a historical, 

processual, and intersectional analysis of software as ‘solving problems computationally’ to 

understand. As the historical account developed by this chapter will show, the principle element 

of distinctiveness resides in how software engineering solves problems, which a Deleuze and 

Guattarian theoretical framework emphasizes. For software engineering, the cares, 

considerations, and interpretations of problematics differ from Computer Science to such a 

degree that they have organized their own plane of reference by which software solutions are 

axiomatized and actualized. This understanding underscores the importance of thinking through 

software problematically by recognizing the processual ways in which it is created because it 

incorporates common social factors and pressures into its creation. In doing so, it provides a 

basis for de-fetishizing future media studies scholarship about programming and source code by 

placing the onus of analysis less on programmatic statements and more on the technical factors 

mediated by social practices leading to their actualization as software. For software 

programming is one practice of many, source code is one kind of text, and their meaning lies 
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elsewhere, before and after the practices and epistemologies leading to its actualization. 

Incorporating this understanding into media studies scholarship will lead to interpretations of 

software as a product of equal parts, both technical and social, and will serve to de-fetishize the 

act of ‘programming’ and source code by expanding the definition of software into its many 

social and machinic encounters and relations, its design and implementation and maintenance.  

The concept of the sociotechnical regime recognizes the explicit and reciprocating effects 

that problems and conditions have on each other, and how sets of axiomatics that ‘solve’ 

problems tend to cohere onto planes of references. Interpreting software engineering as a 

sociotechnical regime applies a Deleuze and Guattarian framework to the analysis of how a 

problem coheres a set of practices and identities toward the production of an idiosyncratic 

solution. Basically, the problems that software engineers solve typically differ from those that 

computer scientists solve because of their social milieus. They may use the same techniques and 

use the same tools—like git or Python or Microsoft Visual Studio—and even, in some cases, 

work on or through the same problems, but their solutions are shaped by different milieus. At the 

root of both Computer Science and software engineering is the enormous problem of ‘solving 

problems computationally.’ Understanding its implications involves treating the emergence of 

software engineering as a series of events upon a multiplicity of plateaus by tracing the historical 

and social factors surrounding that problem rhizomatically. Doing so furnishes a means to find 

the points of divergence through which ‘software engineering’ coalesced as a distinct identity, 

itself a product of a distinctly different plane of reference from Computer Science. As Chapter 2 

argued, problematics—the combination of a problem with its conditions—are inexhaustible as 

virtualities, but are exhausted each time a solution is actualized (May, 2005). Brian Massumi 

(2002) uses the phrase “field of potential” to describe the kind of Bergsonian immanence which 
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is evident in Deleuze’s thinking about problematics, e.g., “It is in becoming, absorbed in 

occupying its field of potential” (p. 7), which is helpful for framing the type of ‘becoming’ a 

sociotechnical regime encompasses. Sociotechnical regimes are immanent to a problematic (or a 

multiplicity of problematics). So, just as problems are immanent to their conditions in that they 

are influenced and shaped by them, problems also serve to guide and shape the nature of future 

conditions by determining how—in some ways—the future becoming is of things which are 

actualized. For Deleuze, problems are inexhaustible virtualities, or fields of potential, and 

solutions are exhausted the moment they are actualized, a point May (2005) helpfully elucidated; 

it stands to reason that different regimes have different concerns based on the nature of their 

social interactions within a milieu. The simple premise here is that ‘software engineering,’ while 

related to, and potentially taught by those within Computer Science, is actually a distinct 

discipline because of the way its conditions shape its interpretations of problems and its 

actualizations of solutions. If it is a mistake to conflate a software engineer with a computer 

scientist, it is a mistake to conflate a software engineer with a programmer: they may overlap in 

praxis, but only superficially. This is how media studies scholarship has fetishized 

‘programming’ and ‘source code’. By collapsing the many epistemological and ontological 

factors and considerations that go into software as a technic behind ‘programming,’ scholarship 

tends to treat a print out of source code as emblematic for issues of design, as a kind of 

Foucauldian ‘author function’ that fails to incorporate the significance of iterative authorship to 

computational work, or of the delimiting and mediating effect of a social milieu has on the 

‘programmer.’ It is also a forest for the trees issue: sociotechnical regimes incorporate a 

perspective of software that sees programming in place of the needs’ assessments, requirements 

gathering, testing, documentation, and maintenance tasks that produce software. If it is wrong to 
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assert that needs assessments are the entirety of software development, it is equally inappropriate 

to hide software behind a fetish of programming.  

To understand how and why software engineering is a sociotechnical regime, and how 

that understanding allows media studies interpretations to properly value its problem solving and 

design, this chapter explores the history leading up to the 1968 NATO Conference on Software 

Engineering, which was a formal industrial and academic response to a period of time known as 

the ‘software crisis’ (Cambel-Kelly et al., 2014; Ensmenger, 2010; Naur & Randell, 1969, p. 70). 

Software engineering was and continues to be informed by circumstances and practices leading 

up to the 1968 NATO Conference on Software Engineering, which roughly coincided with the 

formalization of Computer Science as an academic discipline, e.g., the emergence of pedagogical 

standards released by the Association for Computing Machinery (ACM) later that year, often 

referred to as “Curriculum ‘68” (Atchison et al., 1968). The ‘software crisis’ narrative of the 

1960s in the United States and Europe lead to tensions between academic and industrial 

computational efforts, between the application and suitability of theoretical knowledge, and 

between the management of human resources through pedagogy, corporate management 

structures, and an emphasis on reducing expertise to increase the predictability of software 

outcomes. After 1968, software engineering became the practical application of theory and 

disciplinary knowledge of computation through processes of management to the task of 

translating real-world problems into computational solutions. Through Deleuze and Guattarian 

problematology, this chapter will explore the negative spaces and truncated lines of flights 

established toward the end of the 1960s by looking at examples of how software engineering 

continues to resist and encapsulate aspects of management and Computer Science while 

behaving as a fundamentally creative and inventive field.  
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An effective ‘Deleuze and Guattarian’ history of software engineering requires us to 

weave four narrative threads together through the smooth and striated spaces of the ‘software 

crisis’: the trends of early computation and the establishing of a ‘programmer’ or ‘coder’ identity 

and role; the formalization of Computer Science as an academic discipline; the managerial 

impetus for wanting more authority over programmers; and the manifestation of ‘software 

engineering’ as a community of practice. Specifically, the work of this chapter examines how the 

nascent period of computation in the United States, and the historical narrative of the software 

crisis, produced a ‘software engineering’ community of practice that is both formally 

compounded and terminally unstable. Seeing programming as one practice of many will de-

fetishize source code and lead to a nuanced and thoughtful understanding of how software is 

comprised of many parts and human relations. Source code is one kind of product software 

engineers produce. Once enumerated, software engineering can be seen as a sociotechnical 

regime with peculiar types of problems (intrinsic and extrinsic) within our contemporary 

domains.  

 

Software Engineering 

Software engineering’s central problematics—the problems and conditions the regime 

continue to encounter—reside in the literature of the 1960s ‘software crisis,’ the NATO meeting, 

and the inception of the ACM’s Curriculum ’68. It then takes a Deleuze and Guattarian turn 

toward history by overlaying the three nascent periods upon current trends of Continuous 

Delivery and DevOps (e.g., Development and Operations), looking at how software engineering 

and the difference of problem definitions in Computer Science and managerial science have led 

to an inherent tension between abstract and practical considerations defining software 
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engineering as a discipline. Problems themselves will then be defined, followed by a dissection 

of the narrative about the work of software engineering in Frederick Brook’s The Mythical Man-

Month: Essays on Software Engineering (1995).  

The software crisis of the 1960s can be understood as the intersection of plateaus and 

events and rhizomes that culminated in the formalizing of disciplinary lines and expertise that 

has not been overcome many decades later. This section produces a brief history of computation, 

looking at the working methods established with the inception of ENIAC and EDVAC in the 

1940s. I then produce a post-war history of the emergence and formalization of Computer 

Science. Next, I examine the managerial practices for factors pushing against the efforts of 

academic computation to define ‘professionalization.’ Finally, I look at software engineering as a 

kind of working with computing, a solution to both the formal and practical requirements 

dictated by Computer Science and managerial requirements for an industry struggling with issues 

of ‘programmer autonomy,’ and the narrative tropes associated with ‘black box wizardry’ and 

unbalanced power relations which informed the eventual emergence of software engineering as a 

technical regime. From this discussion, we will better understand, in Chapter 4, why software 

engineering, as a technical regime with an unstable plane of reference, has often been conflated 

with and fetishized for the asignifying code (programming) it produces, rather than for the 

problematic apparatus it enacts and struggles through.  

 

Early Software 

Of the many projects begun in that era, I mention only a few. I have selected these not so 

much because they represent a first of some kind, but because they illustrate the many 

different approaches to the problem. Out of these emerged a configuration that has 
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survived into this century through all the advances in underlying technology. (Cerruzi, 

2012, p. 31) 

 

This section examines how the trends of early computation formalized an identity and set 

of labor practices that persist today. Paul Cerruzi’s (2012) quote above refers to a period from 

1935 to 1945 where the problem of ‘solving problems computationally’ became feasible for 

engineers and scientists to axiomatize. His statement can be from a Deleuze and Guattarian 

perspective: plateaus began to expand, capturing the events leading to the organization and 

actualization of different approaches to a central problem. While many of those approaches 

failed, it would be wrong to say they were discarded. One of the central and binding elements of 

a history of computation is the influence of the ‘programmer’ role, which is distinct from 

‘computer scientist’ or ‘manager.’ The history of early computation sheds light on the human 

practices and rituals entangled in relationships with computational machines. ENIAC, for two 

reasons, is recognized as the first modern computer in the United States: first, it was an 

electronic digital system; second, it could be programmed (Ensmenger, 2010). While other 

computational systems predated ENIAC (Williams, 2000), the significance of ENIAC (and its 

successor, EDVAC) for this brief history anyways, resides in how ‘programming’ was conceived 

and enacted, who performed the work, and the emergent relationships within a problematic that 

confounded (and defined) future expectations for ‘software’ and its development.  

Computation with ENIAC sought to replicate a working dynamic that had been 

established at the U.S. Army’s Ballistics Research Laboratory (BRL) during the early stages of 

the United States involvement in World War 2. The BRL sought to compute hundreds of tables 

that could improve the efficient delivery and accuracy of bombs and artillery shells, tracking 
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variables accounting for environmental issues, like windspeed, elevation, and humidity. The 

‘computation’ of the tables was performed by women, who received instructions from men; from 

these women the first ENIAC “coders” emerged (Chun, 2005, p. 33; Ensmenger, 2010, p. 35). 

ENIAC was originally conceived to automate and replicate the working process employed by the 

‘female computers,’ so when ENIAC was introduced, several female ‘coders’ were employed 

from the BRL to produce the “manual labor” required to perform the “mechanical translation” of 

“higher-level mathematics” into “machine language” (Ensmenger, 2010, p. 35). Programming, at 

this stage, was thought to be menial work: “[programmers] were former computers because they 

were best suited to prepare their successors: they thought like computers” (Chun, 2005, p. 33); 

programming, as envisioned by Goldstine and von Neumann in Planning and Coding of 

Problems  for an Electric Computing INstrument was six stages of orderly and predictable 

process, was straightforward and rational, and if done properly, the work of a coder was simply 

the translation of math into machine instructions.  

Problems, when expressed rationally through mathematics, were assumed to be ordered, 

logical, and straightforward. ENIAC was designed and implemented based on those ideals. What 

the male mathematicians and scientists working with ENIAC and the coders realized, however, 

was starkly different from ‘rational’ and ‘orderly’: not only did ENIAC not model the hand 

computation the women performed at the BRL, but the translation of ‘problems’ into electrical 

approximations demonstrably proved that computation was a messy business. The female coders, 

therefore, “would often have to revisit the underlying numerical analysis” of a problem and soon, 

“some scientific users left many or all six of the [Goldstine and von Neumann] programming 

stages to the coders” (Ensmenger, 2010, pp. 36-37). DeLanda (2010), explaining assemblage 

theory in Deleuze’s work, described an environment where many actors interact: we can define 
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an assemblage in as few as two parts, be it two people interacting, or a person and a machine; or 

we can look at the parts of an institution, such as a municipal government, comprised of 

agencies. Production is an immanent product of assemblages, emerging from the interaction of 

their components (“legitimacy” in the case of agencies, as DeLenda argued (2010, p. 19)). 

Through the encounter with ENIAC, the effort of solving problems computationally gave rise to 

an assemblage of computer, managers, and coders, whose emergent relations expressed the 

difficult material realities inherent in programming.  

Like any assemblage, however, the realization of ENIAC and the functional and 

productive use of computation during World War 2 established a working template of 

‘complications’ as much as a new ‘command’ over computers, encompassing human as much as 

machinic elements. Problems are not only messy things but working on problems entangles and 

yields to a reality that is unforeseen in many circumstances. If solutions are actualizations, and 

problems are virtual, the solution is not only “a particular form of exhaustion” (May, 2005, p. 

85), but an immanent material encounter that expresses fundamental limitations that shape the 

expression of the solution as much from the circumstances surrounding it as by those inherent in 

the problem itself. In 1965, for instance, Willis Ware stated that “[all] the programming language 

improvement in the world will not shorten the intellectual activity, the thinking, the analysis, that 

is inherent in the programming process” (“As I See It: A Guest Editorial” in Datamation, pp. 26-

27); at the outset of ENIAC and its stored-program version, EDVAC, the work of programming 

was viewed simply as translation, of requiring little intellectual effort, and hence worthy of the 

subservient female ‘computers’ brought over from the Ballistic’s Research Laboratory.  It is a 

testament to those women that the grim reality of computation, the difficulties inherent in 

‘translation’ from the virtual to the actual domains, soon became apparent: Ensmenger (2010) 
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states that what surprised the institutions pushing computation in the 1940s was not the 

revolutionary aspects of digital, machinic labor, but of how the computer programmer—the 

interface between the virtual problem and its actualized solution in the machine—shaped the 

revolution (p. 29). He explained that 

[extracting] acceptable performance and reliability out of the early electronic computers 

required an enormous degree of messy tinkering, local knowledge, and idiosyncratic 

technique. (p. 31) 

‘Computer’ problems, conceived in their inexhaustible virtuality, were truly virtual. The 6-staged 

abstracted set of practices of Goldstine and von Neumann were also virtual. For ENIAC, the 

emergent properties of successful programming were immanent to the relationship of male 

managers and scientists (who were supposed to complete the first five stages) ordering female 

subordinates to ‘simply translate’ the mathematics of a problem into machine instructions that 

were recognizable as a solution for that problem. But as the difficulties inherent in the actualized 

material realities of the solutions emerged, in the form of running programs, the relationship of 

‘master’ and ‘servant’ inherent to the command-nature of computation became subverted when 

the female ‘coders’ often completed all six Goldstine and von Neumann stages themselves 

(Ensmenger, 2010; Cerruzi, 2012). Essentially, through exposure to the machine and the 

production of ‘local knowledge’ and ‘idiosyncratic technique,’ the female coders discovered and 

subverted the limits of a problem’s virtual imposition upon the actual within the assemblage of 

masters, servants, and machines. The programmers—those women coders at the outset of the 

United States efforts to leverage computation—not only succeeded but set the stage for the 

digital revolution. 
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Early programmers (‘coders’) were problem solvers as much as they were problem 

translators, but the autonomy they required to become effective produced systemic subversions 

within the assemblages within which they were employed. At the center of that stage resided a 

new power dynamic that required autonomy to produce expertise, i.e. time to perform ‘messy 

tinkering’ to learn and to become effective at translating virtual problems into actualized 

solutions: “[until] about 1950, it was a major accomplishment if one could get an electronic 

computer to operate without error for even a few hours” (Ceruzzi, 2012, p. 29). Not only were 

the machines difficult to operate and maintain, but the reality of the autonomy required to learn 

how to keep them running, however, was tempered with the fact that the programs were error-

prone. As Maurice Wilkes put it, himself an author of arguably the first book on programming in 

1951 and a mathematical physicist, “a good part of the remainder of my life was going to be 

spent in finding errors in my own programs” (qtd. in Cambell-Kelly, 1992, p. 22). If 

effectiveness is measured by the efficacy of the solution, errors—“bugs” or ‘moths in the 

machine’ (Kohanksi, 2000)—would eventually undermine the profession, because those errors 

were inherent to the work of translating continuous values and processual becomings into digital, 

discretely manifested approximations.  

This section described how the role defined for early programmers established both an 

identity and labor model that would become formalized through academic and managerial 

efforts. The significance of this for a Deleuze and Guattarian history, and for the sociotechnical 

regime of software engineering, resides in how the identity and labor role connected to, 

disrupted, shaped, and were resisted by the thought forms attempting to define it. Expertise 

became a line of flight for programmers through the early history of computation within highly 

structured academic and corporate environments. The issue persisted into the period known as 
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the software crisis; the expertise programmers needed to perform their work is precisely what 

would become resisted in many organizational ways, because software developers were idealized 

as passive receivers, translators, rather than as active thinkers and agents of change. The next 

section describes the organization of Computer Science. 

 

1968, Formalization of Computer Science 

This section describes how Computer Science organized itself as a plane of reference and 

thought form by highlighting some of the difficulties early computationalists experienced as they 

struggled to form their own identity within American and European academic environments. 

Computer Science (CS) was formed as an academic discipline to, in an academic context, 

legitimize the study of theoretical computation, and was a response to cultural pressures to 

professionalize, to become authoritative in the creation and application of software to problems 

both actual and virtual. In 1968, Atchison et al. worked to both formally name the discipline of 

‘Computer Science,’ and outline its areas of study. The report, published in Communications of 

the ACM, expressed Computer Science as the conjunction of three major areas of study: 

information structures and processes; information processing systems; and methodologies (pp. 

154-155). This division of research areas with their associated subtasks—data structures and 

programming languages are enfolded into the information structures and processes category—

not only defined Computer Science then but continues to define modern Computer Science 

departments now. Significantly, Curriculum ’68 is not only a singularity in the Deleuze and 

Guattarian sense but is rather an ongoing event that continues to become by continuing to reside 

over and interact with its own plane of reference and parallel plateaus of managerial science and 

software engineering. The curriculum defined by Atchison et al. (1968), like any specification, 
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defines what is and more importantly, what is not. It allows certain connections to grow 

rhizomatically while trimming others, precluding lines of flight. Computer Science, as it 

formalized and legitimated itself institutionally within academic contexts during its formative 

years, excluded instruction in praxis, or the pragmatic application of programming for practical 

purposes. And in fact, by cementing the gap between the (cliched) divide of theory and practice, 

CS legitimated the study of computation as an intellectual activity worthy of scientific 

investigation.  

In the late 1940s and 1950s in the United States and Europe (notwithstanding the Soviet 

Union and other understudied sites of historical focus), computation, which had first served at 

the pleasure of World War 2, was primarily subordinated to several academic disciplines and 

industries. Universities, like Harvard or Princeton, established computing departments that 

served other departments; the study of computation itself, and the standard unit of analysis—the 

algorithm—would not be established until the 1960s. Computation, initially, was a service. 

Those who worked with and specialized in computation and programming were individuals from 

many backgrounds—chemistry, physics, mathematics, economics—who took an interest in the 

work, but found themselves—as a product of that interest—subordinated to the political and 

social pressures of institutions attempting to locate and task computational resources 

appropriately (Ensmenger, 2010; Cambell-Kelly et al., 2014). The problem was of realizing the 

value of computation. But as their experiences with computation grew, the engineers and 

scientists tasked with working on other people’s problems, began to structure a way of seeing 

and knowing that used the computer as a lens for the world through a principle of generalization 

through algorithmic thinking: “Programmers too often saw their work as temporary solutions to 

local problems, rather than as an opportunity to develop a more permanent body of knowledge 
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and technique” (Ensmenger, 2010, p. 112). The formalization of what would come to be known 

as Computer Science (several terms competed for the distinction) is an example of how a 

Deleuze and Guattarian plane of reference, as an axiomatized set of attitudes, behaviors, and 

techniques, comes to produce a technical regime. What makes the instantiation of Computer 

Science interesting, however, is the way its formalization as an episteme demonstrates Deleuze 

and Guattari’s assertion that the sciences work to principally slow down the circumstances of an 

event, such that the resulting plane of reference becomes the sieve by which chaos is filtered. 

Computer Science emerged as one solution to the inexhaustible and chaotic problem of 

capturing, filtering, and approximating often analog states of affairs in digitally discrete logic 

and processes.  

‘Computation in general’ distinguishes itself from other machines in its generality, and is 

the ultimate form of human mediation, for it sits astride the virtual chaos of the problem and the 

filtered, and desirable predictability the data that it manipulates, its manipulation is the solution. 

A computer’s programmability is its ability to interface with the world, to output work based on 

something input; this programmability, the reality that a computer can be interfaced with other 

hardware or software, allows it to function as a machine-of-machines, a controller issuing 

commands to other machines in a network of relationships. Computers sit at the heart of many of 

today’s assemblages, and the plateau of Computer Science has expanded to produce an 

orientation toward the world that integrates those controllers into the general problems of human 

affairs, evident from the basic timeline of its evolution depicted in Table 3.1. 
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Table 3.1: Significant Events in the Inception of Computer Science 

Event Where Date 
Charles Babbage began designing the Difference Engine to compute the 

values of polynomial functions 

England 1822 

Charles Babbage described the Analytical Engine, the first general-purpose 

computer 

England 1837 

IBM donated tabulating equipment Columbia 1920 

Moore School of Electrical Engineering started UPENN 1923 

Vannevar Bush created Differential Analyzer MIT 1931 

IBM established Thomas J. Watson Astronomical Computing Bureau Columbia 1934 

Samuel Caldwell is teaching 'graduate seminar in machine computation' MIT 1935 

Alan Turing describes a universal computer for solving any describable 

problem 

England 1936 

Konrad Zuse realizes that data and code are the same thing to a general 

purpose computer 

Germany 1937 

Began construction of ENIAC at Moore School UPENN 1943 

IBM built the Harvard Mark I Harvard 1944 

EDVAC, the first stored program computer, was conceived and proposed to 

the Ballistics Research Laboratory 

UPENN 1944 

IBM's Columbia Computing Bureau became the Watson Scientific 

Computing Laboratory 

Columbia 1945 

First computer course taught at Moore School UPENN 1946 

Completed construction of ENIAC at Moore School UPENN 1946 

Established Master's degree program in Mathematics with focus on 

'computing machinery' 

Harvard 1947 

Established PhD program with computing focus Harvard 1948 

EDVAC was delivered to the Ballistics Research Laboratory Eckert-Mauchly Computer 

Corporation (EMCC) 

1949 

Project Whirlwind became the Digital Computing Laboratory MIT 1951 

Louis Fein rigorously defined 'Computer Science' as an academic discipline Communications of the ACM 

journal 

1959 

Edsger Dijkstra completed his dissertation about 'communication with an 

automatic computer' 

University of Amerstdam 1959 

C. M. Sidlo argued for scientific professionalization of computational studies Communications of the ACM 

journal 

1961 

Formed Computer Science program outside of the Computational Laboratory Harvard 1962 

Anthony Oettinger described 'Computer Science' as a hodgepodge of "bits 

and pieces from other disciplines"  

Presidential Letter to the ACM 

Leadership 

1966 

Offered undergraduate degree in Computer Science MIT 1969 

Computer Science became a formalized program (inside of Electrical 

Engineering) 

MIT 1969 

Malcolm Gotterer argued for theoretical standardization Proceedings of 1971 ACM Annual 

Conference 

1971 

Project MAC became the MIT Laboratory for Computer Science MIT 1975 

Offered graduate degree in Computer Science MIT 1979 

 

The lineage of the modern computer was glimpsed first in the 19th century by Charles 

Babbage, who, as Cerruzi (2012) notes, “[anticipated] the notion of the universality of a 

programmable machine” (p. 28). In contemporary terms, the ‘universality of a programmable 

machine’ is now ubiquitous; its universality is inescapable, from embedded microcontrollers in 

wearable internet-of-things (IoT) devices and smartphones, to integrated Central Processing 
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Units (CPUs) on desktop and laptop computers: the data of our lives is squared around its edges, 

conforming to the approximations of the digital limitations inherent in the discrete nature of the 

machinic mediator. In 1937 Germany prior to World War 2, Konrad Zuse realized “that the 

operations of calculation, storage, control, and transmission of information, … were in fact one 

and the same” (Ceruzzi, 2012, p. 24). A year earlier, along parallel lines of thought, Alan Turing 

published work that defined the concept of the universal machine in response to a problem 

German mathematician David Hilbert posed. The idea of the universal machine is one of 

sufficient generalization, where its ability to enact general purpose instructions allows it to 

respond to and act on descriptions of human problems, if those descriptions are formalized in 

some way. Between the idea of a universal machine, and the realization that code (calculation, 

control) is the equivalent to data (storage), a plane of reference yields its organization to a 

systematic axiomatization of reality, and the principles which determine how the continuous 

curves of a state of affairs are squared, are made to fit discrete, digitally abstracted containers. 

What is universal in the machine Turing envisioned is its approximating nature and the strength 

of its mediation upon the data it inputs and outputs. But as a testament to the importance of 

‘lineage,’ and how significant insights tend to build on the work of others, Alonzo Church 

published Church’s Thesis in 1935, which still impacts computational theory today, according to 

Adam Olszewski et al. (2006). Church’s thesis deals with the nature of “partial recursive 

functions,” and the assertion that “there is no recursive decision procedure for first-order logical 

validity” (Mendelson, pp. 228-229), which turns out to be analogous with Turin’s work on what 

are now called “Turing-computable” functions (p. 229), but is arguably unprovable because it is 

a “rational reconstruction” rather than a scientific proposition with its related functions. 

According to Elliot Mendelson, Turing effectively proved Church’s thesis, which shows how 
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ideas germinate and bear fruit—even ideas which at first are refuted for not being scientific 

enough. 

Before its material emergence during World War 2, computation and some of its potential 

applications was reasonably well understood, from a theoretical perspective. Zuse, a mechanical 

engineer by training, and Turing, a mathematician, were inspired by the problems they were 

seeking to overcome and solve. The theoretical basis of what a computer should be—from 

Turing’s universal machine to the brain-like von Neuman architecture of memory, register, and 

stored programs—produced, “in retrospect,” Ensmenger (2010) argued, an “almost 

overdetermined” creation of “an academic discipline devoted to Computer Science” (p. 115). 

Computers, and those who worked with them, were invariably interdisciplinary at their 

formalization in ENIAC and EDVAC, and the instantiation of the first computers had been 

foreseen for quite some time before the first systems in England and the United States went live. 

But the creation of a science devoted to computation had its roots—like any technical regime—

in self-interested and externally motivating factors. While authors like Ensmenger (2010), 

Cambell-Kelly (2014), and Ceruzzi (2012) outline the broad strokes of the cultural and societal 

impetus to ‘professionalize,’ Robert Baber’s (in Glass, 1998) personal account of learning 

electronics and programming during the late 1950s highlights a gap between theory and practice 

that informs the basis of the diverging plateaus of Computer Science and software engineering:  

Because of my education, I was accustomed to basing designs on theoretical and 

mathematical models of the artifact being designed. However, in my experience, writing 

programs, both as a student engineering in programming groups and later at the IBM 

1401 installation, seemed to require just the opposite. No mathematical models existed 

for programs or for designing programs. Obviously, programs had mathematical, logical 
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aspects, but the theoretical-mathematical foundation for programming as a whole was 

missing. … The commonly observed high error rate in the programming activity clearly 

made such a mathematical foundation for programming … desirable, since it would 

presumably lead to design error rates comparable to those in the engineering fields, that 

is, much lower. (pp. 180-181) 

Three salient points are evident in Baber’s account: he worked from and adhered to the plane of 

reference he had been educated in; he experienced a disconnect between the application of the 

theory to the practice of programming; the actualization of theory through programming was 

error-prone principally because, “as a whole,” the “theoretical-mathematical” plane had issues 

interfacing with computational machines.  

Theory and praxis continue to be a line of division between software engineering and 

Computer Science. Historically, Computer Science does not necessarily focus on programming 

and its inherent difficulties; programming emerged into the world through haphazard 

arrangements of immanent expressions, was difficult to learn, difficult to enact, and difficult to 

teach. So, while programming is at the root of Computer Sciences’ expression, in the sense that 

what programmers produce—code—is a kind of transduction1 of a selection set of axiomatic 

principles into a machinic, asignifying language, Computer Science, as a discipline, chose to 

legitimate itself academically by focusing on the ‘theoretical-mathematical’ plane rather than 

through the praxis of programming. As the women ENIAC coders well knew, programming at its 

outset was distinctly not mathematical: at least, not purely mathematical. Programming was 

                                                 
1
 Guattari (2014) explained that “[process], which I oppose here to system or to structure, strives to capture 

existence in the very act of its constitution, definition and deterritorialization. This process of ‘fixing-into-being’ 

relates onto to expressive subsets that have broken out of their totalizing frame and have begun to work on their own 

account, overcoming their referential sets and manifesting themselves as their own existential indices, processual 

lines of flight” (p. 29). 
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frustratingly idiosyncratic: Betty Jean Jennings, one of the six original ENIAC programmers, 

noted that “[since] we knew both the application and the machine, we learned to diagnose 

troubles as well as, if not better than, the engineers” (qtd in Ensmenger, 2010, p. 37). At the 

outset, there was no sufficient theoretical-mathematical basis for transducing the problems 

handed to them by the male engineers and scientists at the Ballistics Research Laboratory, so the 

women charted their own plane of reference which integrated both the axiomatic principles of 

the scientific and engineering fields they were translating, and the immanent and emergent 

principles of ENIAC and its local idiosyncrasies.  

As transducers, while programmers lived astride multiple planes of reference which 

required pragmatic selection and application of techniques, the basis of their pragmatism was 

problematically not a tenet of contemporary education, but rather of self-learning. Aspects of 

abstract theory, like those formalized by ACM’s Curriculum ’68, or referred to by Baber (1998), 

were unquestionably helpful, as they improved the ability for a programmer to provide more 

appropriate techniques to the implementation of a solution from a problem, but the selection and 

real application of theory involved moving through a virtual space of possibilities and potentials 

by emerging into an actual space of material immanence (Deleuze & Guattari, 1977; 1987). 

What was found from the initial encounters with ENIAC, EDVAC, and its successors, was that 

only practical experience could shape individuals into effective programmers. Computer 

science’s attempts to legitimize itself academically would preclude, by and large, the types of 

practical experiential factors that produced effective programmers. In 1959, Price Waterhouse—

today a massive services company employing, at the time of this writing, over 236,000 people—

published a report entitled, “Business Experience with Electronic Computers” which described 

the domains of knowledge competent programmers should have: “systems analysis and design is 
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as important to a programmer as training in machine coding techniques; it may well become 

increasingly important as systems get more complex and coding becomes more automatic” 

(Conway et al., p. 81). As per ACM’s Curriculum ’68, Atchison et al. (1968) recognized that the 

Curriculum Committee’s “recommendations are not directed to the training of computer 

operators, coders, and other service personnel,” explaining that “[training] for such positions, as 

well as for many programming positions, can probably be supplied best by applied technology 

programs, vocational institutes, or junior colleges” (p. 154). Programmers were—and arguably 

still are—viewed as service personnel based on the amount of instruction modern CS 

curriculums devote to issues one might expect to encounter in a corporate environment. Evidence 

of this assertion can be found by comparing the map in Figure 3.1 of courses Atchison et al. 

recommended in Curriculum ’68 to a modern Computer Science course catalog like the one at 

North Carolina State Universities (NCSU’s) curriculum seen in Figure 3.2. Practical instruction, 

teaching a student to become a professional engineering in a team environment, for all intents 

and purposes encapsulated by the term ‘software engineering,’ was not part of the original map 

in Figure 3.1, but has been incorporated to some extent in NCSU’s catalog by way of three 

classes. The first, CSC 326, is a software engineering course for undergraduates that attempts to 

teach the 

[application] of software engineering methods to develop complex products, including 

the following skills: quality assurance, project management, requirements analysis, 

specifications, design, development, testing, production, maintenance, security, privacy, 

configuration management, build systems, communication, and teaming. (Computer 

Science, NCSU, http://catalog.ncsu.edu/undergraduate/coursedescriptions/csc/)  

http://catalog.ncsu.edu/undergraduate/coursedescriptions/csc/
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Much of what the software engineering course attempts to impart are communication skills. The 

other courses offered focusing on practical instruction of principles of the kind Price Waterhouse 

wanted are CSC 510, also called “Software Engineering,” and CSC 519, which focuses on 

DevOps, an approach to so-called “Modern Software Engineering Practices” integrating 

systems’ support and development practices continuous delivery project lifecycles. As of the 

time of this writing, 1 of 48 undergraduate course offerings explicitly focus on business needs 

like “quality assurance” and “requirements analysis”; 2 of 69 graduate course offerings 

(excluding CSC 800 level seminar and doctoral research and examination listings) focus on the 

practical, communicative aspects of engineering.  



www.manaraa.com

  99 

 

 

Figure 3.1: The Curriculum Map of Math (“M”), Basic (“B”), Intermediate (“I”), and Advanced 

(“A”) courses established by Atchison et al. in 1968. 

 

It is safe to take NCSU’s Computer Science department as emblematic of Atchison et 

al.’s Curriculum ’68 both in how it represents the majority of American university curriculums, 
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and for the lack of divergence it demonstrates from the norms established by the committee’s 

work toward the end of the 1970s. “Systems analysis and design,” to borrow from Price 

Waterhouse’s report, incorporates the perspective of human and computational orientations: 

what is talked about between business units in a corporation, for instance, must be translated in 

some way into an operational system or tool.  

Despite the lack of praxis-based education, the legitimizing work of those in the ACM of 

establishing Computer Science as an academic discipline and scientific avenue of study produced 

an obvious ‘expertise’ leadership role in the labor market. Corporations in the United States and 

elsewhere looked to Computer Science graduates as a source of expert-labor. Cambell-Kelly et 

al. (2014) note that while ACM’s 1968 curriculum “helped solve some critical problems for the 

software industry” by establishing “the theoretical foundations of the discipline,” Computer 

Science departments “could not … produce enough programmers to satisfy the demands of the 

larger commercial computing industry” (p. 184). The reasons for this shortage were that 

“[university] degree programs took too long, cost too much, and excluded too many people 

(including … many women and minorities)”: demand outpaced supply, and the pursuit of 

academic bona fides produced a disciplinary culture which, from the perspective of an IBM 

recruiter during the 1960s, failed to “pay serious time and attention to the applied work necessary 

to educate programmers and systems analysts for the real world,” according to Cambell-Kelly et 

al. If we take as true what Deleuze and Guattari (1977) stated, that “[if] desire produces, its 

product is real” and “can be productive only in the real world” (p. 26), then the desiring-subject 

of formative Computer Science, the becoming of the discipline which at first was “missing in 

desire,” controlled the nature of its connections to other disciplines (or ‘machines’ in a Deleuze 

and Guattarian sense) to the extent that it excluded stakeholders from its nascent inception and 
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resulting organization. Computer science had to disconnect from corporate influencers to both 

legitimize its focus on theory and obtain autonomy from those, like IBM or Remington Rand, 

who steered the production and adoption of computing standards after World War 2. While Wing 

(2006) argued that Computer Science “inherently draws on engineering thinking, given that we 

build systems that interact with the real world” (p. 35), the praxis and theory gap was then, as it 

is now, a product of design.  

Even a brief comparison of ACM’s Curricilum ’68 map and NCSU’s CSC course catalog 

offerings demonstrate how ‘software engineering’ or “engineering thinking” as Wing stated 

seems to be a byproduct rather than aim of Computer Science’s promulgation. In 1966, Anthony 

A. Oettinger, then president of the ACM, a letter which discussed the close relationship between 

science and engineering:  

A concern with the science of computing and information processing, while undeniably 

of the utmost importance and an historic root of our organization [i.e. the ACM – BM] is, 

alone, too exclusive. While much of what we do is or has its root in not only computer 

and information science, but also many older and better defined sciences, even more is 

not at all scientific but of a professional and engineering nature. We must recognize 

ourselves—not necessarily all of us and not necessarily any one of us all the time—as 

members of an engineering profession, be it hardware engineering or software 

engineering, a profession without artificial and irrelevant boundaries like that between 

‘scientific’ and ‘business’ applications. (qtd in Meyer, 2013) 

Oettinger’s letter in Communications of the ACM is interesting for three reasons. First, as Meyer 

(2013) points out, Oettinger’s use of the term ‘software engineering’ predates the “eponymous 

1968 NATO conference.” Second, Oettinger recognized ‘Computer Science’ to be, in a Deleuze 
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and Guattarian way, a plane of reference comprised of the intersections of other planes: calling it 

anything but ‘professional and engineering’ was ‘artificial.’ Third, his letter demonstrated that 

there was resistance to the exclusion of praxis—engineering—and ‘business’ (and its needs) 

from the theoretical pursuits of computing and information science. Oettinger knew that the 

study of computation required engineering and business practices and was warning against the 

“irrelevant” disciplinary “boundaries” that were taking hold in the culture of the ACM as it 

sought to legitimize itself academically, and his “letter to the ACM membership” mirrors, in 

some important ways, the arguments implicit and explicit to Wing’s (2006), 40 years later. A peg 

of Wing’s argument, after all, was that computational thinking not only “[complements] and 

combines mathematical and engineering thinking,” but is “[a] way that humans, not computers, 

think” (pp. 34-35). Oettinger and Wing both recognize, explicitly or implicitly, connections of 

the so-called ‘real world’ to the abstract study of algorithms and the science of computation. For, 

despite the efforts exerted to exclude corporate (or ‘neoliberal’) influence over matters of 

curriculum and training in Computer Science, principles of management science, from corporate 

sponsors and researchers, have altered and shaped the plane of reference upon which the plateau 

of Computer Science draws, due to the ways in which technical regimes are internally self-

interested, and externally motivated.   

This section described how Computer Science came to be its own thought form by 

organizing a plane of reference that was both similar to and distinct from the axiomatics its early 

practitioners employed. Computer Science is a discipline borne of interdisciplinarity. The role of 

the ‘software developer,’ or of programming itself, falls into a theory and praxis duality: the 

emphasis of Curriculum ’68 is on theoretical computation, rather than the broad array of 

engineering practices required to develop reliable software systems; the software developer, as a 
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functional laborer, is seen as a resource falling under managerial praxis. The next section 

describes how corporations dealt with issues of expertise, underscoring their influence on the 

founding discussions that would take place during the NATO Conference on Software 

Engineering in 1968, an important year for histories of computation.  

The move toward de-fetishizing ‘programming’ and ‘source code’ for media studies 

involves locating the practice of programming in its broad historical context: programming in 

Computer Science is a means to an end. While programming languages and compilers are an 

area of study falling under the purview of Curriculum ’68, the category is aligned with Data 

Structures and Models of Computation, a subset categorized under “Information Structures and 

Processes” which is one of the five areas defined at the time (Atchison et al., 1968, p. 154). 

Programming languages are at least as important as data structures and models of computation. 

The other major areas of research defined in Curriculum ’68 are Information Processing 

Systems; Methodologies, Mathematical Sciences, and Physical and Engineering Sciences. 

Looking closely at Physical and Engineering Sciences, one can safely categorize 

‘programming’—the act of producing source code—under the 7th category of Physical and 

Engineering Sciences, i.e., “Coding and Information Theory.” Placed alongside categories 

involving the production of circuits, heat management, theories of communication and control, 

programming is an area of research that, while important in Computer Science, is not in and of 

itself the disciplinary emphasis. If programming is not the most important area of investigation 

for Computer Science, the reasons for fetishizing source code and programmers begin to 

evaporate. De-fetishization invites scholarship in what ‘Coding and Information Theory’ might 

mean in practice. 
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Software in Crisis: Intersections of Computation and Management Practices 

This section explains the managerial impetus for wanting more authority over 

programmers by controlling the nature of their expertise. Managerial praxis, as its own thought 

form, is a plateau encompassing many events over grand periods of time; this section simply 

looks at historical evidence from the perspective of a corporate community of practice in and 

around the software crisis. From a managerial perspective, there are four crucial factors that 

come into play about the ‘software crisis’ that impacted, on one hand, the legitimizing 

mechanism of Computer Science as an industrial power, and on the other, the creation of 

software engineering: first, the crisis was fundamentally about costs and predictability; second, 

the crisis was about expertise and reliability; third, the crisis was in part due to how difficult it 

was to define ‘professionalization’ for programmers; and fourth, the culture of corporate middle-

management resisted the interdisciplinary expertise inculcated by programmers doing, as 

McCracken (1961) called it, “systems work” (p. 9) principally because such work eroded 

middle-management’s authority and power. As the communities of practice that would comprise 

‘Computer Science’ sought legitimacy as an academic discipline, managerial practitioners—like 

those of Price Waterhouse, or any business attempting to leverage computing for competitive 

advantage—attempted to make the most of computing resources through the exertion and 

maintenance of authority to control the human costs associated with the disruptive, emerging 

technologies. While many skills informing professional praxis can be taught at trade schools or 

universities, the quality of programming differs in almost logarithmic shades, such that its 

effectiveness could be measured in relation to the location of the solution along a problem’s 

difficulty curve. But difficulty is not univariable; it is a matrix of variables and their relations and 

human factors and material, machinic affordances. If source code, as Chun (2008) contends, is 
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“the ultimate performative utterance” according to those in software studies, the recognition of 

managerial practitioners during the software crisis demonstrably showed that code was only 

important in so far as “its effectiveness depends on a whole imagined network of machines and 

humans” (p. 299), which requires both a metric of ‘effectiveness,’ and the ability to measure the 

product of automated and human coders against their actual, tasked problems. Producing reliable 

‘programmer labor’ was (and remains) difficult if the historically demonstrable reputation of 

‘software as unreliable’ maintains its status quo. The software crisis, from a managerial 

perspective, was both a recognition that traditional routes to professionalization—like 

curriculums in trade schools and universities or certifications—was not producing efficacious 

results, and the realization that the full extent of the problem had no equally ‘full’ solution. 

Issues of expertise reside at the heart of the (ongoing) software crisis. 

First, the software crisis was largely a realization that, while business and academic 

expenditures on computational resources and expertise had grown exponentially from the time 

the first machines from IBM and Remington Rand (among others) made it into the market place 

after World War 2, the return on investment businesses, defense contractors, and universities 

received were poor: not only was the hardware expensive and difficult to maintain, but the cost 

of the expertise required to develop and maintain the software and hardware for those 

installations far outpaced the initial hardware expenditures. Thus, while attempts to automate 

business practices like human resources or payroll required rhizomatic, emergent encounters 

within the states of affairs new (and experienced) programmers found themselves, it took an 

unpredictable amount of time before the programmer could be considered ‘competent’ within 

that business, i.e., capable of producing efficacious code for solutions to problems posed by 

management. The problem was both extrinsic and intrinsic to the business environment for 
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several reasons. As Ensmenger (2010) noted, “[the] problem was a familiar one for the industry: 

although most employers … believed that only ‘competent’ programmers could develop quality 

software, no one agreed on what knowledge and abilities constituted that ‘competence’” (p. 186). 

We like to think of university curriculums teaching students how to write Java, Python, C++, or 

any number of standardized, automated, and cross-platform languages, but early programmers 

typically had to learn to directly code a machine (in the singular sense) using byte code or an 

assembler (specific to that machine), which they may have had no access, and therefore no 

ability to learn to code for, the machine they would be working with prior to being hired for their 

position. Programming knowledge was thus intrinsic and institutional, and as such, external 

factors, like the availability of computing resources, tools, and programming classes at their 

university would have only prepared a programmer in a general sense. “Standardized” languages 

that provided a basis for generalizable expertise were not released until 1957 (IBM’s 

FORTRAN) and 1959 (the U.S. Government’s COBOL), and committees like the 1962 RAND 

Symposium, debated whether those languages were ‘standardized’ or merely ‘common’ due to 

differences between compilers on different mainframes. Both corporate managers and technical 

experts “were concerned with the apparently inability of existing software development methods 

to produce cost-effective and reliable commercial applications” (Ensmenger, 2010, p. 141). As 

the software crisis evolved and grew in the United States, the only sure-thing about ‘solving 

problems computationally’ was that it was reliably expensive. 

Second, because expertise was relative to each business, being both expensive to 

inculcate and difficult to keep, programmers earned a reputation for ‘unmanageability,’ which 

coincides with software’s inherent ‘unreliability’ and error-prone nature. When ACM’s 

Curriculum ’68 formally abdicated issues of ‘corporate’ or ‘neoliberal’ praxis in the education of 
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computer scientists, it left the education of business programmers and data analysts to 

corporations. Corporate pedagogies, for lack of a better term, essentially ensured that corporate 

and government sponsored languages would dominate the working-programmer’s day-to-day 

existence; this would, in turn, feed back into and influence the tools and languages that 

universities would adopt. For example, Harold Joseph Highland (in Glass, 1998) was a student in 

the Graduate Business School at Long Island University in 1958 when the first computer was 

installed at the university, an IBM 1620; the system came with the newly-released FORTRAN, a 

language developed by IBM to solve scientific and engineering problems using a mathematical 

syntax. FORTRAN is short for “FORmula TRANslation,” and John Brackus’ team at IBM 

hoped the math-like syntax of the language would improve the ability of programmers to both 

learn programming and write reliable software. As a language, while FORTRAN was not the 

first to use a compiler, which is a tool that automates the translation of programming statements 

into machine instructions, it was the first ‘automated programming language’ to produce high-

performing code in a timely manner. Earlier attempts at automation, like the FLOW-MATIC 

programming language and tools championed by Grace Hopper, produced laboriously slow 

results and were untenable as candidates for industry standardization. Brackus’ team, with 

FORTRAN, produced a language and toolset which not only reduced the expertise required to 

program a machine, but simplified programming and increased software reliability generally. 

The language specifications and compilers of FORTRAN and COBOL (in 1959) allowed—and 

still allow—programmers to interact with a computer without having to know the underlying 

machine instruction set or assembly language, which has come to be known as a higher (if not 

‘high’) level language. FORTRAN and COBOL not only reduced the amount of idiosyncratic 

and specific expertise required to interact and work with a computer, but FORTRAN allowed 
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programmers to use algebraic statements to make their mainframes perform work and COBOL’s 

compiler translated English-like syntax into machine instructions.  

Third, ‘programmer professionalization’ was an emergent property from a set of a 

relations that continually changed throughout the software crisis. While compilers reduced the 

expertise required to learn how to program the underlying machine, languages like FORTRAN 

arguably did not reduce the difficulty of programming effective solutions in both business and 

academic environments, based on the sweeping complaints driving the “software crisis” narrative 

which came to pass in the 1960s, hence McCracken’s ‘systems work’ statement. Programmers 

were being called upon to touch many aspects of a businesses operating environment to 

implement systems that captured and met their employer’s requirements. So, until 

standardization was introduced, compilers differed in important ways across mainframes (or 

operating systems and platforms, today), meaning work performed in one version might not 

translate to another version on a different mainframe. The first effort to standardize FORTRAN 

occurred in 1966 (i.e., FORTRAN 66), where a specification was established and recognized by 

the American National Standards Institute (ANSI) such that any FORTRAN 66 compiler—to be 

recognized as such—would meet the requirements established by that specification. 

Standardization was an attempt to reduce the extent to which idiosyncratic expertise was 

required to build, deploy, and maintain software in corporate environments.  

Fourth, the expertise required to efficaciously use computers to solve problems disrupted 

traditional modes of authority in corporate environments. Corporations in the 1950s and 60s 

could easily purchase computer hardware, but had a difficult time making it work well, in 

applying its capabilities in ways that reduced costs and simplified or solved problems. So, it is an 

understatement to say that the expertise required to use computational resources—to conceive of 
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and implement software—was disruptive. On one hand, programming expertise was not only 

difficult to learn (and teach) but was domain-specific and difficult to generalize across corporate 

environments. As Cambell-Kelly et al. (2014) note, in the 1950s “it became almost a tradition 

that newcomers to programming simply could not be told” what they needed to know to do their 

jobs, and that almost universally programmers “had to learn the truth about debugging in the 

same painfully slow and expensive way,” which continues into contemporary times (p. 169). 

Programmers often learned how to program a specific machine; upon transitioning to another 

position at a different company, often restarting the learning process. But on the other hand, and 

significantly more important in terms of authority, programmers in early corporate environments 

touched broad swaths of those environments—the “systems work” which McCracken (1961) 

detailed included tasks like requirements gathering and needs analysis, which meant talking to 

those looking to benefit from the product being developed (‘stakeholders’), designing and 

diagramming the solution, to its programming and implementation. And then, systems work 

included tasks like testing and ongoing maintenance, to answer questions like, “does the program 

do what it claims to do?” Because the process of bringing software into life was difficult and 

involved, Brooks’ (1995) observation is particularly salient: “[for] the human makers of things, 

the incompletenesses and inconsistencies of our ideas become clear only during implementation” 

(p. 15). Managers expected software products (final things) but received processes (ongoing 

things). The realization was that programs are rarely ever finished, and as such, programmers 

disrupted middle-management authority structures by becoming indispensable. To combat this, 

programmer expertise had to be reduced. 

The rhetoric of the ‘software crisis’ of the 1950s and 60s is the backdrop to an 

intersection of plateaus from which ‘software engineering’ emerged, and the event of 
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intersection between Computer Science and managerial plateaus continues to define and shape 

expectations for software engineering. The way Computer Science organized itself after 

Curriculum ’68 established a ‘praxis’ and ‘theory’ divide demarcating the theoretical, academic 

concerns of a scientific discipline from mundane business or corporate realities. Curriculum ’68, 

as an artefact of ACM effort, was notable for its parallelism in purpose in that it not only 

formalized a discipline, but by means of definition and by organization of a plane of reference 

defined the broad notion of ‘professionalization’ of computer-oriented work by resisting and 

undermining the efforts of other groups from defining the term. The ACM actively worked 

against the Data Processing Management Association (DPMA)’s effort to offer a Certificate in 

Data Processing (CDP) program in the 1960s (Cambell-Kelly et al., 2014, p. 184); the definition 

of what constituted a ‘professional programmer’ for the ACM was about domination over a 

nascent and burgeoning industry, and for its curriculum to be valued above its competitors, it had 

to discredit those competitors’ offerings. Yet, Computer Science, despite eventually becoming de 

facto in terms of credibility, did not (and arguably could not) meet the needs of business during 

the software crisis, which continues to both be well-regarded and insufficient today (c.f. The 

Next Web, 2016, “Why half of developers don’t have a computer science degree”). As 

Ensmenger (2010) explains, “[perhaps] the most important reason why the ‘personnel problem’ 

dominated the industry literature during the late 1950s and early 1960s has to do with a 

fundamental structural change in the nature of software development” (p. 20): human 

relationships with computers and the ways computers are used to solve problems have always 

been changing. During the post-war period, the rate at which computational hardware improved 

outpaced the tools and techniques necessary to take advantage of the hardware, and a 
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consequence of this gap (which has not been solved in modern contexts, either) is a workforce 

that must continually re-educate itself as new tools and techniques promise to close it.  

While the ‘programmer expertise problem’ was viewed differently by its stakeholders, its 

crux resided on the fact that, as McCracken stated, real-world programming requires “not so 

much a body of factual knowledge” but of “problem solving” skills, of which “no one knows 

how to teach” (qtd in Ensmenger, 2010, p. 21). Essentially, neither curriculum—that proposed by 

the ACM in 1968, or of the arbitrary requirements listed for the DPMA’s CDP—covered the 

breadth of knowledge required to instill programming expertise in formal ways. Organizations, 

from a corporate management perspective, were at risk of “being held hostage by their ‘whiz kid’ 

technologists” due to their inscrutable, inculcated expertise (Cambell-Kelly et al., 2014, p. 183), 

and further, the expertise came at a high cost and produced unreliable results. From a Deleuzian 

standpoint, his focus on the movement of problems through virtual and actualized domains and 

his emphasis on the ‘orientating’ role of problems sets up a conversation about the how plateaus 

and their intersections demonstrate the concrete ways in which problems ‘become real,’ and are 

at the same time inexhaustible—and are something even more. He explained that while it is 

“[the] virtual [which] possesses the reality of a task to be performed or a problem to be solved,” 

the problem itself “orientates, conditions and engenders solutions” (1994, p. 212). Problems are 

filtering manifolds through which the virtual becomes as it flows. The ’software crisis’ became a 

term used to describe the shocking expense and poor results produced during the initial attempts 

to use computing to solve problems. While part of the crisis was, as Cambell-Kelly et al. (2014) 

explain, “finding enough experienced programmers to do the work” (p. 174), the other was 

principally the speed at which the computing hardware changed, and then the reliability of what 

was produced at all.   
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While the divide was initiated in large part by Atchison et al. (1968)’s exclusion of 

explicit engineering education as a strategic move to reduce the amount of interference from 

outside entities in defining and legitimizing the study of computation, the effort was only 

partially successful if viewed as an expression self-interested and externally motivated technical 

regime. Around the time of the ‘software crisis’ during the 1960s, corporations like IBM or 

Remington Rand worked to exert influence over matters of education at universities by not only 

furnishing the computational resources and machines necessary for Computer Science’s 

curriculum, but by introducing programming languages and practices that would define the way 

problems and solutions were discussed, defined, and solved. As the computing industry emerged 

during the post-war period of the 1950s and early 60s, issues of authority and power—to both 

define the ways in which computing was used, and to label and describe what constituted 

‘programming’ and ‘expertise’ in a push to professionalize—emerged which pitted not only large 

US associations like the Data Processing Management Association (DPMA) and Association for 

Computing Machinery (ACM) against one another, but also included manufacturer’s like IBM 

and Remington Rand and others in bids to determine how computers would be used, who would 

use them, and toward what purposes.  

The so-called ‘software crisis’ was a product as much of the difficulties of accruing 

expertise inherent in the material encounters of human and machine through both hardware and 

software processes (like maintenance and development, respectively), and the fierce competition 

of industry powers for authority over the nascent field which used computers as a medium 

through which to think about and solve problems, it was also a product of relations of speed and 

time, to put a Spinozist (and Deleuzian) spin on the event. The problem was never just about 

‘programming,’ but of the speed at which hardware evolved and software stagnated. 
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Programming, as Brooks (1995) would explain later, was a small component of a process 

comprised of many components, and the ‘expertise’ issue at the heart of the software crisis was 

fundamentally about working methods and standards in relation to constant movement. Figure 

3.2, taken from the RAND Symposium “On Programming Languages,” depicts programming’s 

cost relation to other factors like training, testing, maintenance, documentation, and so on: 

 
Figure 3.2: The formula for cost analysis forwarded at the 1962 RAND Symposium, “On 

Programming Languages” (Patrick et al., 1962, p. 25). 

 

From the perspective of a technical regime, the factors alluded to in Figure 3.1 during the “On 

Programming Languages” symposium show a small area of intersection between business and 

scientific computing.  

The RAND Symposium occurred in response to a rumor that the Department of Defense 

wanted to “standardize on a language for Command and Control” (Patrick et al., 1962, p. 25). In 

1962, COBOL was 3 years old, and language standardization—the idea of cross-platform 

compilation, or in modern parlance, ‘write once, compile everywhere’—was desired to reduce 

the cost of computation. Beyond industry or governmental inertia, the idea that a language 
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becomes standardized when it is used by a large enough player to the exclusion of others, the 

need for standardization was summarized neatly in a statement made by Patrick that spoke to a 

line of intersection between many plateaus that would influence and shape the software 

engineering’s plane of reference and technical regime six years later:  

The problem gets refreshed every day every time you order a computer. Thirty-six 

months from now you probably won’t have anything installed that you have installed 

now. In other words [sic] you’ll get a fresh start in 36 months. (p. 28) 

The pace at which computer hardware evolved during the 1950s and 1960s moved swiftly, but 

the operating methods and values within the nascent and competing technical regimes of science 

and management had not yet standardized: essentially, the constantly ‘new’ tools—assemblers 

and compilers—and operating systems and computational architectures were an impediment, 

rather than facilitator, of positive development and change. Yet, while the RAND Symposium 

members recognized the desirability for a ‘standard language,’ i.e., one whose syntax and 

outcomes were “maintained and enforced” by means of “some sort of committee agreement,” 

they argued about what the threshold for standardization was, and upon whose authority calls for 

standardization relied. With standardization, we see a move toward diagrammatization that 

Deleuze and Guattari discussed (Watson, 2008), as well as a move toward fixing or inscribing 

axioms upon a disciplinary plane of reference. Further, the software crisis demonstrates one of 

the principles argued by Deleuze and Guattari (1994) regarding the speeds at which disciplines 

work: philosophers, as they survey a plane of immanence upon which concepts reside, survey at 

infinite speeds; science works by slowing a phenomenon down such that it can be processed, 

ordered, and reproduced. The respective planes for both disciplines are ways of “confronting 

chaos” by “laying out a plane, throwing a plane over chaos” (Deleuze & Guattari, 1994, p. 197). 
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That the rigorous mapping of axioms across a plane of reference was compromised by the 

rapidity at which computing changed is no surprise, in hindsight. The pace of hardware 

development and software integration of computational resources into academic and corporate 

states of affairs left little time for the axiomatization of propositional functions, making it easier 

to see how programmers could only be idiosyncratic, self-taught employees: no formal basis of 

praxis could initially be established, and so chaos dominated to the extent that agonism between 

theory and praxis existed, such that the failure of a stable plane of reference formed the basis of 

the software crisis.  

From managerial praxis, computation’s nascent and unstable plane of reference was 

inherently navigated and learned ‘on the job.’ Programmers had to learn how to program the 

specific machines their employers owned; they also had to learn their employer’s contexts, use-

patterns, and user requirements for the systems they were asked to automate, improve, and 

deploy. At one point during the RAND Symposium (Patrick et al., 1962), a participant indicated 

that there had been as many as 90 “common languages” used across the many different computer 

mainframes bought and deployed by customers across the United States (p. 26); programmers 

were expected to learn and become proficient in a relative style of engineering—an issue that is 

not unlike the circumstances they find themselves in today. Idiosyncratic expertise was 

problematic from a managerial perspective due to not only to its ability to upset org charts and 

structures of authority and power, but for its expense and inherent unpredictability (if not 

unreliability). But ‘expertise’ is, crucially, where consideration from a Deleuze and Guattarian 

perspective produces insights: the ‘software crisis’ was the product of an unstable plane of 

reference that undermined the ability for early programmers, managers, and scientists to think 

and operate clearly. For science, a plane of reference filters and delimits the pure virtual (e.g., 



www.manaraa.com

  116 

 

chaos) comprising matter and its immanent and emergent possibilities; if a plane of reference is 

in flux, it stands to reason that the virtual, in all of its possible forms, influences the actual. 

Deleuze and Guattari (1994) explain that “[knowledge] is neither a form nor a force but a 

function: ‘I function’” (p. 215) and that ultimately, knowledge, from a scientific perspective, is 

for  

setting limits that mark a renunciation of infinite speeds and lay out a plane of reference; 

assigning variables that are organized in series tending toward these limits, coordinating 

the independent variables in such a way as to establish between them or their limits 

necessary relations on which distinct functions depend, the plane of reference being a 

coordination in actuality; determining mixtures or states of affairs that are related to the 

coordinates and to which functions refer. (emphasis added) 

Without a stable plane of reference, limits are unknown; variables cannot be fully identified, 

preventing coordination of variables and other dependent states; the mixture of the ‘function’ of 

knowing, the ability to operate from a plane of reference in the real, would always be 

compromised. Hence, as Schönher (2013) explained, “[laying] out a plane is the condition for 

that plane to rise to the power of thinking and creating” due to its ability to intercede in the actual 

and give shape to the virtual, to delimit relations in states of affairs (p. 32). A plane of reference 

shapes the functioning of thinking and knowing. It follows that an unstable plane of reference 

produces turmoil, which is evidenced succinctly by Daniel D. McCracken’s (1961) recognition 

that not only was “[the] main trend in the human side of computing … the explosion in the 

number of humans” (p. 9), but the ability for the industry to both maintain and induct existing 

and new experts was failing. Programming, as noted above by the RAND Symposium and 

Brooks, was one part of the process of software development; to solve problems reliably, 
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programmers needed to learn how to design systems, and  “systems work is not so much a body 

of factual knowledge, as an approach to problem solving—and no one knows how to teach the 

problem solving approach” (McCracken, 1961, pp. 9-10). While it can be systematized, ‘problem 

solving,’ computationally or otherwise, is fundamentally rhizomatic, intersectional, and 

experiential. 

This section described the issues managers faced during their initial encounters with 

computation and the programmers required to ‘solve problems computationally’ within corporate 

environments. De-fetishizing source code and programming involves recognizing the 

communicative and technical practices involved in acquiring expertise, which is and has been a 

historically human feature of production. Expertise afforded software developers a disruptive 

form of autonomy within conservative business cultures, and even ‘expert’ software developers 

of the day were still considered to produce unreliable, buggy software, ergo the software crisis. 

The issues of manageability of programmers, and the confounding of their initial conception as 

translators and passive receivers, could only be mitigated through systemic reductions of 

expertise. The next section describes how ‘software engineering’ was the academic and industry 

response to the theory and practice duality in the expertise domain of programmers of the 

software crisis.  

 

Emergence of Software Engineering 

In many creative activities the medium of execution is intractable. Lumber splits; paints 

smear; electrical circuits ring. These physical limitations of the medium constrain the 

ideas that may be expressed, and they also create unexpected difficulties in the 

implementation. … Computer programming, however, creates with an exceedingly 
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tractable medium. The programmer builds from pure thought-stuff: concepts and very 

flexible representations thereof. Because the medium is tractable, we expect few 

difficulties in implementation; hence our pervasive optimism. Because our ideas are 

faulty, we have bugs; hence our optimism is unjustified. (Brooks, 1995, p. 15) 

 

This section explains how software engineering became formalized in response to 

industry and academic factors. It establishes how the identity of ‘software engineer’ or ‘software 

developer’ came to encompass what it does, while also entangling many practices and processes 

that, once integrated into media studies conceptualizations of ‘software,’ can only de-fetishize 

‘programming.’ The emergence of ‘software engineering’ in 1968 was as much an attempt to 

increase the reliability of ‘software production’ by applying engineering practices (and thinking) 

to its development (thereby reducing its costs and increasing the predictability of its outcomes), 

as it was to reduce the authority and power of its practitioners from the impositions of 

unassailable expertise. For corporations navigating the software crisis, the costs and expertise 

required to produce software needed to be industrialized, such that any programmer could be 

substitute for or with any other programmer, so that timelines could be forecast and costs 

predicted; but for academics, as evidenced by Atchison et al.’s (1968) Curriculum ’68, the 

reliable production of software products was not the direct pedagogical concern of Computer 

Science. Rather, CS would inculcate a form of computational thinking which was focused on 

abstract rather than practical considerations, and explicitly set practices like budget estimates, 

needs assessments, requirement gathering, planning, testing, and documentation skills aside. And 

while modern descriptions of computational thinking incorporate words like ‘engineering’ 

(Wing, 2006) into their explanations, they tend to exclude the realities of the praxis encapsulated 



www.manaraa.com

  119 

 

by the term by focusing on the benefits of the abstract, theoretical concerns of disciplinary 

Computer Science. So, the fact that software engineering and Computer Science were both 

formalized during the same year is significant, rhizomatically, because it shows how lines 

connection were trimmed, and lines of flight continue to persist and resist modern summations of 

skills and categorical labeling: in many ways, Computer Science is the study of computation to 

the exclusion of the software corporations expected it to teach how to produce. This means that, 

just as programmers had to learn how to program in the scope and context of their specific 

corporate environment, programmers are still—despite some courses at contemporary 

universities in ‘Software Engineering’—expected to learn the essence of their praxis on the job. 

A status quo was established at some point in CS’ past that continues into contemporary times. 

The tension between corporate and academic interests leading to the development of ‘software 

engineering’ was therefore one of accountability and resistance: ‘software engineering,’ as it was 

called at the eponymous NATO summit in 1968, was an attempt to formally map out a plane of 

reference comprised of axioms from managerial and industrial praxis and Computer Science to 

make it both manageable and teachable.  

But what makes ‘software engineering’ an interesting praxis to study from a Deleuze and 

Guattarian perspective is the nature of software itself, with its conjunction with axiomatic and 

political impositions, its relations and definability as rhizomes and assemblages, and its 

ontological and epistemological consequences. Mahoney (2008) explained, in What Makes the 

History of Software Hard, that the “history of software is the history of how various communities 

of practitioners have put their portion of the world into the computer” (p. 8). What makes the 

history of software hard, according to Mahoney, is that software is perpetually the product of a 

‘legacy,’ of the historical patterns and trends which bring it into being. From a Deleuze and 
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Guattarian (1987) perspective, software might be, if we recognize it as being both a product of its 

legacy and its immediate expression, an always-processual adjacement, which is the dynamic 

form of an assemblage: it is always coming into being. So, software, as it is executed on a 

computer, is always brought into being through its compilation into machine instructions or 

bytecode, and its legacy is always evidenced in the trends and patterns and libraries referenced in 

its source code by the axiomatized thought-form of its language. Software might be the 

“nomadism of those who only assemble” (p. 24), because it is never only its source code, its 

machine instructions, or its execution ontologically; software is both a historical precedent and 

antecedent and is thus an expression of an episteme, a telos through an axiomatized plane of 

reference that brought it into being while simultaneously allowing it to serve as a basis for the 

development of the next becoming, the next “version” of an application, the next exhausted 

iteration of a problem’s inexhaustibility.  

If software has such a fluid definition—as static source code or compiled machine 

instructions, as a dynamic product, a process, a telos, as a legacy—software engineering is 

necessarily an imposition or filtering of chaos, the stretching of a sieve-like plane of reference 

over the pure virtual “thought-stuff” comprising ‘software’ alluded to by Brooks (1995). The 

axiomatization of software production, of programming, began nearly as soon as stored program 

computers like EDVAC and Cambridge university’s EDSAC were conceived and implemented 

in a generally programmable way. “Baby,” the Manchester Small-Scale Experimental Machine 

(SSEM) went live in June of 1948 and is credited as the world’s first stored-program computer, 

the installation and delivery of EDSAC and EDVAC in 1949, to Cambridge and the U.S. Army’s 

Ballistics Research Laboratories, respectively, provided a basis for automation that would 

require increasingly sophisticated tools and conceptual models. In 1948 at Cambridge, David 
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Wheeler, a PhD student, was tasked with solving the “programming problem,” and began 

working on the first symbolic converter, a program of 30 instructions which converted logical 

(and human readable) statements into binary machine instructions (Cambell-Kelly et al., 2014, p. 

169). Wheeler’s program, called “Initial Orders,” solved the problem of readability (after a 

fashion) by allowing other programs to be written using tools like assemblers, meaning the task 

of writing in ‘machine instructions’ or pure binary could be left to the computer. However, 

Wheeler’s symbolic converter exposed another problem, that of “getting programs to work 

correctly.” Cambridge’s solution would cement, as Mahoney (2008) already noted, the ‘legacy’ 

inherent in software: as “[it] was realized that many operations were common to different 

programs,” e.g., programmers would often be asked to determine the square root of a value, or to 

print a specific line of text on a display, the Cambridge group developed a library of subroutines 

(Cambell-Kelly et al., 2014, p. 169). Programmers would develop programs that consisted of a 

smaller amount of original code by relying on larger amounts of (ideally) tested and proven 

subroutines; this development, “[the] idea of reusing existing code was and remains the single 

most important way of improving programmer productivity and program reliability.”  

Significantly, the model established at Cambridge has not changed. Using subroutines 

and libraries of code are a primary form of mediation in programming; it is arguably correct to 

state that programmers are mediated as much by their tools and libraries as they are through the 

programming languages they use. As a trope, many beginning programming textbooks have 

students compile a program which prints a statement, like “Hello, world!” to a display. Deitel & 

Deitel’s (1994) textbook on the “C” programming language lists the program in Table 3.2 as the 

first program a student might try compiling and running: 
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Table 3.2: A slightly modified first C program from Deitel & Deitel’s (1994) textbook, adjusted 

to include the stdio.h header so that standard input and output subroutines, like “printf,” are 

available to the program, making it buildable (p. 24). 

 

#include <stdio.h> 

/* A first program in C */ 

int main() 

{ 

 printf("Welcome to C!\n"); 

} 

 

Even the simplest programs require libraries to function. To get Deitel & Deitel’s program to 

compile and run in Microsoft Visual Studio 2017, I had to modify it slightly by incorporating an 

‘int’ (4-byte, 32-bit signed integer capable of representing positive and negative whole numbers) 

as the return value of main() because Microsoft’s C++ compiler required the main procedure and 

entry point of the application to have a return type; additionally, I had to include “stdio.h,” which 

is a header file to C’s common input and output methods (like “printf,” print function). Without 

including stdio.h, the program in Table 3.2 would have no way print text to a standard console 

display without the programmer deliberately writing a new implementation using low-level 

methods through inline (or linked) assembler statements, which might have worked with MS-

DOS (Microsoft Disk Operating System) at the time Kittler (2013) was writing “Protected 

Mode” in Word Perfect, but would be prohibited by modern Operating Systems (OS), which 

limit a program’s access to underlying hardware for security and virtualization reasons (among 

others)—somewhat unironically the reason ‘protected mode’ was implemented by Intel, to the 

chagrin of Kittler in his eponymous article. Programmers program through libraries and think 
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through their tools, which are integrated and organized in memory—not to mention linked by to 

the program’s executable file—using principles designed by Wheeler in the early 1950s. 

Cambridge also published the first programming book, The Preparartion of Programs for an 

Electronic Digital Computer in 1951, which “set the programming style for the early 1950s, and 

even today the organization of subroutines in virtually all computers follows this model” 

(Cambell-Kelly et al., 2014, p. 170). The role of ‘legacy’ in the development of software and the 

emergence of software engineering, of the “many histories” and communities of practice 

Mahoney (2008, p. 8) noted, shows lines stretching across a plateau rhizomatically, like rings of 

a tree, or layers of an onion’s cross-section.  

The NATO Software Engineering Conference in 1968 was an attempt to control some of 

the growth of the software development plateau. While phrases like ‘standards and practices’ 

were written about extensively prior to and during the software crisis in journals like Datamation 

and Communications of the ACM, the reality of those things were relative to specific local 

contexts, like a business or an academic computing center. By conceiving of the software crisis 

as a plateau to help us understand its development, progression, and on-going consequences, the 

power of Deleuze and Guattari’s approach to history is evidenced by a tracing of the 

intersections of relative attempts at standardization. Essentially, and with some obviousness, the 

legacy of one practice can influence and shape other intersecting practices, but the attempts to 

standardize the direction of the event of software development can be thought of as culling 

points of opportunity, or lines of flight, upon its plateau. With a sufficiently axiomatized plane of 

reference such culling deliberately favors the selection of an axiom and ordinate and seeks to 

reduce the likelihood of alternative selections. But what happens when ‘first principles’ are 

themselves in flux, and the plane of reference is unstable? Rhizomatic growth occurs in a form 
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where many concentric rings, representing communities of practice, compete at points of 

intersection for dominance: what works best; what can be shown to work best; what potential 

methods can lead to something working best?2 Imposing control over the ordinates used to 

reference axioms controls ontological outcomes, and those controlling the selection of ordinates 

shape its epistemology. The NATO conference participants recognized that they were addressing 

a polemic issue: ‘software engineering’ was “deliberately chosen as being provocative, in 

implying the need for software manufacture to be based on the types of theoretical foundations 

and practical disciplines, that are traditional in the established branches of engineering” (Naur & 

Randell, 1968, p. 8). The term was provocative because, despite being “fully accepted that the 

term software engineering expressed a need rather than a reality” (Randell, 1996), the material 

reality of computation—its in-betweenness, its virtuality, its nature as ‘thought-stuff’—made it 

difficult, if not impossible, to test in the ways demanded by the epistemologies bound to those 

implied by the ‘engineering’ label. 

The controversy was addressed by Edsger W. Dijkstra some years later in a way that 

shows how the event of the 1968 NATO conference is ongoing—how the controversy of the 

label continues to resonate and intersect with neighboring plateaus. As Dijkstra (1988) noted in a 

speech delivered in Austin at the University of Texas, aptly titled “On the cruelty of really 

teaching computing science,” that computers were indivisibly complicated and capable of 

expressing immensely dense datasets qualified them as “radical novelties” that could only 

sufficiently be appreciated and taught using an “orthogonal method” of pedagogy: “[coming] to 

grips with a radical novelty amounts to creating and learning a new foreign language that can not 

                                                 
2
 What is interesting here is that the plateau and the plane of reference of software development ensnares and 

integrates both asemiotic and semiotic significations: “One has, with initially a kind of split personality, to come to 

grips with a radical novelty as a dissociated topic in its own right. Coming to grips with a radical novelty amounts to 

creating and learning a new foreign language that can not be translated into one's mother tongue” (Dijkstra, 1988). 
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be translated into one’s mother tongue.” Dijkstra was a pioneer in Computer Science, 

abandoning a PhD in physics in favor of the nascent discipline in 1959. To him, programming 

during the era of the software crisis was troubled principally by the idiosyncratic expertise 

inculcated by its practitioners: “[programmers] too often saw their work as temporary solutions 

to local problems, rather than as an opportunity to develop a more permanent body of knowledge 

and technique” (Ensmenger, 2010, p. 112), and so his later statements worked to emphasize the 

intellectual opportunities programming yielded. However, that a programmer worked with 

‘radical novelty,’ or expressed it, meant that, as a job requirement, they had to possess the ability 

to work with numbers and datasets that   

totally [baffle] our imagination, [and have] to be bridged by a single technology. [The 

programmer has] to be able to think in terms of conceptual hierarchies that are much 

deeper than a single mind ever needed to face before. Compared to that number of 

semantic levels, the average mathematical theory is almost flat. (Dijkstra, 1988) 

The point Dijkstra was making is that computation is essentially indivisible from the perspective 

of managed complexity. Complexity is typically managed through division: large things are 

divided into smaller things; if the smaller thing is still too complex, it is further divided. Yet, 

from Dijkstra’s perspective, the abstract and theoretical basis of Computer Science cannot be 

simplified: its ‘semantic levels’ are too deep. So, of software engineering itself and the effort to 

teach principles and techniques to aid development, the attempt to systematize or ‘engineer’ 

software is merely an attempt to hide computation’s complexity: 

A number of these phenomena have been bundled under the name "Software 

Engineering". As economics is known as "The Miserable Science", software engineering 

should be known as "The Doomed Discipline", doomed because it cannot even approach 
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its goal since its goal is self-contradictory. Software engineering, of course, presents itself 

as another worthy cause, but that is eyewash: if you carefully read its literature and 

analyse [sic] what its devotees actually do, you will discover that software engineering 

has accepted as its charter "How to program if you cannot.” (Dijkstra, 1988) 

Essentially, the argument Dijkstra makes is that the study of computation, the science of 

information and algorithms, is too complex to be divided and further subdivided into forms 

allowing people to work with parts of the discipline; rather, its practitioners must work with 

wholes. His crux is that one should use theory to find the true nature of the problem such that its 

solution can be expressed for all problems of a type, i.e., in speaking about the placement of 

dominos on a checker-board pattern of arbitrary size, the answer is to “deal with all elements of a 

set by ignoring them and working with the set’s definition.” This is interesting, because it, on 

one hand, implies an orientation of the ‘computer scientist’ toward their disciplinary plane of 

reference, e.g., all categories of knowledge and their referent axioms must avail themselves 

always, mediated through a disciplinary practitioner, to the study and consideration of a problem. 

And on the other, that there is a kind of transcendent, rather than immanent truth expressed 

through mathematical reasoning, which the ‘science’ of computation is ultimately a form of.  

The rhetoric of the software crisis was not empty. While Curriculum ’68 cemented the 

theoretical basis for Computer Science, the NATO Software Engineering Conference in 1968 

exposed a gap, which is implied in Dijkstra’s statements about the complexity of Computer 

Science. The problems associated with software design were fundamentally rooted in scalability, 

and what happened—and continues to happen—when the scope of a solution grows 

exponentially in response to the problem (or manifold problems) it attempts to solve. 

Considering that programmers at the time of the NATO Software Engineering Conference might 
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have had a degree in a related field, like mathematics, physics, or some form of engineering or 

accounting, they came to corporate jobs deficient in the skills they would need to learn to be 

proficient in those environments. As Brooks (1995) came to realize while managing the 

development of IBM’s OS/360 operating system during the mid-1960s, programmer labor was 

not directly proportional to a task. “The bearing of a child,” he famously quipped, “takes nine 

months, no matter how many women are assigned” (p. 17). More programmers did not translate 

into faster development, or even better reliability, and recognizing if an application ‘solved’ 

anything required new ontologies and epistemologies to interpret development outcomes. The 

production of software dips into and out of virtual and actual domains, and at some point, the 

reasonable response to manage the complexity of a problem is division. Individuals at the 

conference, like Mr. A. G. Fraser, recognized that  

One of the problems that is central to the software development process is to identify the 

nature of progress and to find some way of measuring it. Only one thing seems to be clear 

just now. It is that program construction is not always a simple progression in which each 

act of assembly represents a distinct forward step and that the final product can be 

described simply as the sum of many sub-assemblies. (Naur & Randell, 1968, p. 10) 

At the height of the software crisis, programmer labor not only confounded traditional metrics 

and practices, but programmer output was more than the sum of its parts. Dijkstra’s argument 

about complexity—the indivisible whole—is reasonably true if a program is considered as an 

immanent expression of relations, in a Deleuze and Guattarian sense, or how Hayles (2005) or 

DeLanda (1997) might explain it. In mechanical engineering, repeated physical measurements of 

material strengths and physical interactions produce a model which frames expectations, such 

that a design’s success can be confidently predicted; for software efforts, it was difficult to 
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anticipate the outcome of the assemblage of parts many programmers produced. At the 

conference, Dr. E. E. David recognized that “there are good reasons why software tasks that 

include novel concepts involve not only uncalculated but also uncalculable risks” (Naur & 

Randell, 1968, p. 9), leaving corporations to find a way to efficaciously deploy computational 

resources, and discovered that the human costs associated with the purchase of those resources 

far outpaced initial hardware expenditures3.  

So, while Dijkstra came to view software engineering with suspicion (if not outright 

derision), Cambell-Kelly et al. (2014) noted that “the theoretical concerns of academic computer 

scientists were not always seen as being relevant to the problems faced by working corporate 

programmers” from a business perspective (p. 184). The degree to which managerial and 

Computer Science’s referential planes intersected determined not only respective truth values—

what truth should look like, whose truth it should be, types of outcomes, pedagogies, etc.—but 

the reality of expressing those truths, and of moving from virtual or diagrammatic domains into 

actual and concretized domains. The production of software in ‘the real-world,’ for lack of a 

better term, required a way to manage and systematize the design and implementation of a real-

world (or emergent) problem using abstract principles, and had to axiomatize a broad set of 

asignifying and signifying functions and ordinates because their propositions had to encapsulate 

not only the abstract, diagrammatic principles and processes of Computer Science, but the 

ideally diagrammatic but perpetually exposed and compromised systems of signification which 

comprised practices like ‘needs-assessments,’ ‘requirement-gathering,’ ‘labor management,’ and 

the authority and power of expertise. At some point, a ‘real-world’ design is compromised by 

signification, in the sense that it fails to capture what Dijkstra (1988) called “down-to-earth 

                                                 
3
 Famously detailed in Brook’s (1995) account of IBM’s development of OS/360. 



www.manaraa.com

  129 

 

mathematics” in his speech to the Computer Science department at UT Austin. Dijkstra attended 

the NATO conference for software engineering and recognized at the time that “the massive 

dissemination of error-loaded software is frightening” (qtd. in Naur & Randell, 1968, p. 9), but 

dismissed attempts codified by ‘software engineering practices’ twenty years later as false 

solutions. Yet, those solutions persist because they serve the needs and requirements of those 

needing to forecast and measure programming labor and practices and are themselves the 

emergent expressions of praxis from their own plane of reference, their own plateau.  

Software engineering is neither purely managerial praxis and theory, or computational 

praxis and theory, but was born of both disciplines, yet encapsulates something more in its 

attempts to mitigate expertise. Computer scientists, managers, and programmers attended the 

NATO conference in Brussels, where representatives from “computer manufacturers, 

universities, software houses, [and] computer users” were invited to speak and work toward 

developing better understandings of software design, production, and service (Naur & Randell, 

1968, p. 8). One of the major developments—for both good or bad, depending on whom one asks 

(c.f. Dijkstra, 1988)—was the development of ‘programming methodologies.’ Today terms like 

‘waterfall,’ ‘agile’ (i.e., “extreme” programming), ‘DevOps,’ and ‘continuous delivery’ are used 

to describe the practices teams, departments, or companies use to conceive, design, implement, 

test, document, and deliver software. Software methodologies evolve as developers and 

managers continue to revisit the problem Fraser (Naur & Randell, 1968) noted, of adequately 

identifying and measuring “the nature of progress” toward completion, using new tools and 

communicative strategies to ideally increase the accuracy of when the “sum of many sub-

assemblies” becomes the “final product” specified and designed at the outset of work. Such 

methodologies not only structure the programming tasks and shape the resulting code 
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programmers produce provides a mechanism that employs relative levels of expertise at different 

project scopes: junior developers are substitutable and are used to perform most of the 

programming, while experts architect and design the solutions. Mr. K. Kolence defined a 

software design methodology as being “composed of the knowledge and understanding of what a 

program is, and the set of methods, procedures, and techniques by which it is developed” (in 

Naur & Randell, 1968, p. 15). One of the first programming methodologies was ‘structured 

design,’ which “reflected the belief that the best way to manage complexity was to limit the 

software writer’s field of view” (Cambell-Kelly et al., 2014, p. 185); the method was alluded to 

by B. Randell in a paper presented at the conference, Towards a Methodology of Computing 

System Design, which called for “a structuring of the design process,” which emphasized a 

phrase (and concept) used by Dijkstra, Zurcher, and Randell in other publications, called “level 

of abstraction” (Naur & Randell, 1968, p. 118). A level of abstraction essentially allows 

problems, tasks, and implementations of lower levels of code to be considered ‘solved,’ so that 

operations on the current level can be written, and issues at higher levels can be ignored. As a 

level is finished, its “primitives … are provided by the processes of the immediately lower 

level,” so that “each level … is … a set of solutions … to a set of problem areas which the 

designers have chosen to regard as being closely related.” At a functional level, the diagram of a 

structured design will differ wildly from an unstructured one because each level of abstraction 

controls—in a properly designed and implemented system—access to the data and methods of 

their respective level: low-level, essential implementations can be handled by experts, while 

higher-level tasks can be programmed by entry-level developers because they use procedures and 

data that are ideally tested and proven to work. Layers control, by design and implementation, 
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what developers working on other layers can see and use: without abstraction, developers could 

effectively ‘touch’ (i.e., change) all aspects of a system.  

Programmer manageability transitioned through the software crisis from a reputation of 

idiosyncratic and unassailable expertise, toward one of substitutability, due in large part to the 

discovery of the structured program theorem in 1966. Conceptually, while structured software 

design and structured programming involves a great deal more than ‘levels of abstraction,’ it is 

notable for being the first step towards limiting a programmer’s ‘vision’ by containing a scope of 

work to only that which a programmer was required to implement, a fundamental tenet of 

managing complexity and the labor that goes with it (Linger et al., 1979):  

the rediscovery of software as a form of mathematics in a deep and literal sense is just 

beginning to penetrate university research and teaching, as well as industry and 

government practices. The forcing factor in this rediscovery has been the growth of 

software complexity, and the inability of informal software practices and management to 

cope with the complexity of today’s challenges in software. (pp. vii-viii) 

Structured programming not only attempted to classify programming as a form of mathematics 

but attempted to harness the work and ultimately the communicative practices programmers 

performed. The work of Dijkstra, not incidentally, was crucial to the rise of structured 

programming as a methodology (p. viii). What a programmer sees, or can see, defines the extent 

to which they work, and that ‘vision’ describes not only their level of expertise, but the extent to 

which they are trusted within the scope of an implementation to make changes by management. 

‘Vision’ works its way through descriptions of levels of abstraction through words like 

‘implementation hiding’ (which is a crucial element of interfaces, which are public contracts 

describing libraries of methods and data expose for programmers, while hiding their 
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implementations from observation). By not having to see everything, a developer should only see 

what they need to see to complete a given task. Provided the proper libraries for a given scope, 

one programmer should be able to do the work of any other programmer with a similar level of 

expertise. That entire programming languages, e.g. Pascal in 1971, were built around the concept 

of structured design and taught to undergraduate Computer Science courses for more than 20 

years indicates the desirability of control (Cambell-Kelly et al., 2014, p. 185), not only over the 

problem to be solved, but the programmer working on the solution. Software design 

methodologies have always worked, from the outset of their conception, to realize the “ultimate 

goal” of a “’software factory’ complete with interchangeable parts (or ‘software components’), 

mechanized production, and a largely deskilled and routinized workforce.”  

The combination of ‘software’ and ‘engineering’ was (and is) controversial not only 

because it is not about the discovery of the true through mathematical reasoning or the holding 

up of transcendental ideals in a Kantian sense, but especially so in that it does not have the same 

kinds of empirical and therefore measurable outcomes that other engineering disciplines enjoy. 

Dijkstra’s statements about complexity and his overall attitude toward software engineering 

illustrates the tension that persists between managerial and Computer Science and is evidence of 

distrust of the methods used to design and implement software. The tension between managerial 

and Computer Science—especially as it relates to the software crisis—is that ultimately the 

economic production of software is about the reliable implementation of a product that meets a 

set of needs while (hopefully) solving a problem that someone—usually a customer—(hopefully) 

has. Just as there are products that exist which have no purpose, there is poorly conceived 

software that, through misinterpretation, obstinance, or ignorance during the requirements 

gathering and assessment phases, progressed unwisely toward diagrammatization and 
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implementation. Atchison et al. (1968) listed three broad categories in Curriculum ‘68, 

“Information Structures and Processes,” “Information Processing Systems,” and 

“Methodologies” (pp. 154-155), and it is difficult to believe that any pedagogical system is 

capable of imparting an ever-expanding totality of knowledge to a student; software engineering, 

as a human and social praxis, was tasked with—at the outset of its conference—finding a way of 

bridging and translating aspects of Computer Science’s plane of reference into ontologies and 

epistemologies that valued and defined ‘truth’ differently, and was designed to place impositions 

on its human actors to make them controllable, predictable, and replaceable, while also allowing 

those skills to be deployed across organizations encompassing multiple cultures and needs. The 

gap between the academic and corporate planes of reference, where computation is concerned, 

resides in the uncomfortable blending of signifying and asignifying functions and propositions 

conjoined with praxis that must produce both signifying and asignifying results, which will be 

explored in the next chapter. 

This section described how software engineering came to be considering industry and 

academic practices and considerations. It established how the identity of ‘software engineer’ or 

‘software developer’ came to be typified by programming, which is emblematic—essentially a 

stand-in—for the broad array of practices that academics and corporatists expect from software 

developers. This section has shown how ‘software engineer,’ regardless of its inherent polemics 

as an identity, is an intersectional and rhizomatic community of practice that has developed its 

own plane of reference in response to both the inceptive demands placed upon it from 

experiences throughout the software crisis of the 1950s and 60s and ongoing requirements for 

implementation efficacy and manageability. 
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Software Engineering as a Plateau 

Understanding software engineering as a thought form distinct from Computer Science 

and managerial praxis is the first step toward de-fetishizing ‘programming’ and ‘source code’ in 

media studies scholarship. Many demands are made of software developers, and as a result, the 

axiomatized plane of reference has expanded and contracted rhizomatically across its ongoing 

plateau. At first programming around the time of EDSAC “was an issue that was very much 

taken for granted by the majority of early computer projects” because “the emphasis was on the 

hardware, so that it was only when a machine sprang into life that the business of programming 

was seriously considered at all” (Cambell-Kelly, 1992, pp. 18-19), and the expertise it 

engendered did gift a disruptive amount of authority to agents outside of traditional managerial 

structures. However, programming became relegated to one of many practices, in a way, after 

those managerial structures evolved to clip certain lines of flight that expertise afforded those 

software developers, effectively reducing their agency in corporate environments by collaterally 

reducing their expertise. Now, while modern software developers are asked to perform many 

duties due to the nature of the interaction of Computer Science and managerial praxis, they use 

software developers use many practices—like Software Development Life Cycles and Software 

Testing Life Cycles (SDLC and STLC, respectively)—to produce reliable software, issues that 

will be explored at length in the next chapter.  

Programming, while important in the sense that it produces what a computer executes, 

i.e., software, is less important that adequately and appropriately understanding the problems the 

software should solve; de-fetishizing programming allows software and its developers to seen as 

agents of many practices—as points of intersection between competing and complimentary 

planes of reference—which are more important than choosing variable names or commenting 
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lines of code. The practices involved in SDLC methodologies, for example, involve translating 

problems that reside in signifying domains into solutions which are expressed in asignifying 

domains. Arguably, the root of good software development is not only a grasp of theory from the 

Computer Science side, but the ability to understand and communicate problems through 

managerial domains, by understanding people and their issues, and then turning those issues into 

products. Software and its developers are far more than ‘programming,’ and entire realms of 

communicative practices can be explored if the materiality of source code or programming as a 

form of writing is dismissed in favor of following a problem through whatever domains and 

communities of practice it intersects.  

We can apply hermeneutics within problems to trace connections and discover emergent, 

immanent meanings as potentials within an assemblage of components, like industries, 

customers, limits of knowledge and material, and cultural requirements. At the outset of an 

interview Deleuze and Guattari conducted with Christian Descamps in 1980, “On A Thousand 

Plateaus,” Deleuze asserted that concepts “should express an event rather than an essence” of an 

idea (1995, p. 25); events, he argued, can correspond to a specific date, a year, or a period of 

years, and “map out a range of circumstances” encapsulating “modes of individuation beyond 

those of things, persons, or subjects” (p. 26). Events are comprised of variables, which 

themselves represent lines along a plane, such that “everything has its geography, its 

cartography, its diagram” (p. 33). Diagrams—“[what] we call a ‘map,’ … is a set of various 

interacting lines”—reveal not only how an outcome came to be, as a historical effort and effect 

of a normalized, linear progression of interactions, but how the shape of the event depicted on 

the plane, its positive and negative spaces, the lines that connect as continuities or disconnect as 

orphaned segments, continue to affect and shape intersecting, and ongoing events. As a 
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sociotechnical regime, software engineering continues to interact with the events that lead to its 

inception as a whole; software development continues to be difficult work that is difficult to 

teach, difficult to manage, and unpredictable, and costly. Its planar orientation—the angle upon 

which it pivots between the plateaus of academic disciplinary theory and industrial managerial 

desires—has shaped its definition as a field such that, to become a software engineer, one must 

accede to being both secondary to theory and comfortable with being utterly reducible, a unit of 

predictable and replaceable labor.  

For as tempting as it is to conflate software and software engineering with programmers 

and source code, it is arguably the communicative practices necessary to correctly gather and 

interpret requirements that determine the success or failure of the software designed and 

implemented for a particular purpose. The source code produced by programmers is only as good 

as how accurately the requirements were gathered and interpreted at the outset of a project, 

which is a form of expertise neglected in media studies’ scholarship that attempts to define 

source code, or programming, or software. Programming is important, because at some point an 

application must be implemented, just as a part for a car is stamped and shaped from metal, but 

without the design, which clearly defines a solution to a problem, the source code or the car parts 

will fail. Successful software represents not only the culmination of distinctly technical expertise, 

but of communicative expertise as well, both within practices of design, and of labor 

management as well. Studying what goes into the production of effective software views great 

source code as a product of the mediating effects of the observations and communications 

necessary to endow one or more practices as a ‘best practices.’ This communication is a form of 

mediation that operates through a sociotechnical regime and involves at its core the transduction 

of signifying values into asignifying values, and vice versa. 
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Chapter 4: Transduction and Mixed Semiotics of Software Engineering 

This chapter explores and defines transduction as the interfacing process of a 

sociotechnical regime. In it, I argue for an interpretation of Guattari’s concept of mixed semiotics 

to show how a sociotechnical regime, like software engineering, relates to the world and 

incorporates the world back into itself. This chapter performs three tasks. First, it defines 

Guattari’s concept of asignification and its role in the diagrammatism of software engineering 

processes, locating them in the plane of reference that organizes the limiting fields and 

assemblages of enunciation which define its sociotechnical regime. Second, it defines the 

concept of transduction as a process mediating the actual movement and conversion of values 

and their meanings into and out of asignifying and signifying domains. And lastly, it explains 

signification’s role in transducive processes by specifically examining the difficulties inherent to 

the double articulation of a problematic. Transduction and mixed semiotics are a way to account 

for the problem of communicating problems, which is evident in the historic unreliability of 

software and the unpredictability of its implementation and delivery. Transduction allows media 

theorists to interpret the interactions of a sociotechnical regime like software engineering with 

external connections, like clients or users, integrating the nuanced ways an assemblage of 

processes brings software to life. Incorporating the many social and machinic connections (Chun, 

2008) that realize code focuses attention on the ways, difficulties, and consequences of 

communicating problems between groups of software developers and customers, providing a 

way to study the mediating effects of problematics on collaborative tasks. Doing so de-fetishizes 

fixations on the programmer and ‘source code’ by exposing the communicative practices 

involved in realizing software.  
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Evidence for transduction and the interactions of signifiers and asignifiers is found in 

Guattari’s (1984) repeated use of the term ‘machinic.’ Outlined in his “Machine and Structure” 

essay, for example, machinic invention becomes a motif which appears repeatedly throughout his 

work. For Guattari, technology was not only a thing but the theory behind the thing: 

The history of technology is dated by the existence at each stage of a particular type of 

machine; the history of the sciences is now reaching a point, in all its branches, where 

every scientific theory can be taken as a machine rather than a structure, which relates it 

to the order of ideology. Every machine is the negation, the destroyer by incorporation 

(almost to the point of excretion), of the machine it replaces. And it is potentially in a 

similar relationship to the machine that will take its place. (Guattari, “Machine and 

Structure,” 1984, p. 112) 

The ‘machinic’ implies processes of connection; the metaphor of the ‘machine,’ e.g., of desiring 

machines, of machinic invention, or machinic phylums are found in Guattari’s contributions to 

his collaborations with Deleuze. The second sentence of the quote above indicates a recognition 

of the iteration technological developments undergo; the third, to the implementation of the new 

version. A type of development and domain of meaning exists that resists matters of purely 

human language, signs, semiotics, and linguistics: Guattari argued that, whether one’s approach 

to such things were structuralist or enunciative, “[everything] happens as if the socius were 

thought to be folded within language” (2011, p. 25). Rather, he argued for a type of mixed 

semiotics that connected machines in ways that escaped signification: the human was not, and 

should not be, from Guattari’s perspective, the center of history (Genosko, 2014). So, the 

conjunction of the machinic with semiotics—the role of the signifier, of encodings, and of 

diagrammatic processes—becomes “machinic semiotics,” which “is a theory of history” 
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(Watson, 2008, p. 135), which becomes a way to describe connections and ruptures between 

materialistic contexts. What is premised here is that Guattari’s contributions for a mixed 

semiotics, the integration of asignification into a semiotic expression, provide a mechanism to 

address Brown’s (in Mitchell & Hanson, 2010) desire for an ideal materialism, which would be 

capable of showing “multiple orders of materiality … between a phenomenological account” of a 

user and a technology, “an archaeological account of the physical infrastructure of the medium, 

and a sociological account of the cultural and economic forces that continue to shape both the 

technology itself and our interactions with it” (pp. 59-60). Using mixed semiotics, generally, and 

paying close attention to the connections, overflows, and distinctions evident in diagrammatism 

is a way to interpret and understand the complex expressions produced by software engineers as 

an ideal materialism. 

If sociotechnical regimes are “a particular type of machine,” a way to encapsulate history, a way 

to demarcate a plane of reference from another (Guattari, 1984, p. 112), transduction describes 

the way its agents operate across boundaries, connecting to other regimes to affect things and 

events. Transduction accounts for the movement of signifying and asignifying content in ways 

describing the emergence of signifying meaning, of the play and evolution of language to 

determine our situations (Kittler, 1999) by the processes used to actualize them, which structures 

the media underlying future materialist exchanges. This is particularly evident for software 

engineering: software is at the root of the “metamedium” of computation (Manovich, 2013, p. 

335). It stands to reason that an efficacious point of analysis for a sociotechnical regime are at its 

points of connection, between aspects of its incorporated practices and those of other agents and 

regimes, to determine the extent to which those connections are understood. By leveraging 

concepts from Deleuze and Guattari in both their individual and collaborative work, I seek to 
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provide theoretical insights into how connections might be analyzed by accounting for the 

factors increasing the likelihood for their miscommunication.  

 

Asignification 

This section develops a nuanced understanding of asignification, which is a part of 

Guattari’s (1984, 2011) model of mixed semiotics. Understanding asignification in the scope of 

software engineering is important because of its fundamental role in mediating signifying 

interactions. As such, asignification is remarkable because it is inherent to systems of writing and 

book binding just as much as it is to typing on type-writers or programming source code for 

software, and doubly so for its ability to store a world of signifying meanings. From Guattari’s 

perspective, while enunciations are often comprised of mixtures of semiotic forms, this section 

argues that systems organized around planes of reference (Deleuze and Guattari, 1994) are 

fundamentally (or try to be) diagrammatic and are therefore asignifying in nature. To establish 

this point about asignification and its significance to software engineering, this section begins by 

defining asignification; it then explores how software engineering communicates or makes by 

defining the role of diagrammatism in conjunction with Guattarian (2011) assemblages of 

enunciation; it then highlights the role of diagrammatic processes and Guattarian (2011) fields of 

consistency at work in McLuhan’s (Year) assertions about automation and Kittler’s (Years) 

discussions about ‘digitalism’ to highlight the role it broadly plays in software engineering. This 

section sets up the following section on transduction by forwarding the difficulties inherent to 

translating meaning from mixtures of semiotics that favor asignification into those that favor 

signification and back. 
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Asignification Defined 

Guattari developed the concept of asignification to describe how nonhuman entities and 

scientific regimes communicated as part of his concept of mixed semiotics. His model for mixed 

semiotics comprises three areas, or types of singular enunciations: natural encodings; asignifying 

semiotics; and signifying semiotics. “Natural encoding[s]” are the “’a-semiotic transmissions of 

messages and codes” which occur “at the biological, chemical, and physical levels, and do not 

involve any kind of human language”; diagrammatics comprise “’a-signifying’ semiotics” which 

are used by “information technology, science, and the arts [to transmit] ideas, functions, [and] 

intensities with no need to signify any meaning” (emphasis added, Watson, 2008, p. 47). 

Diagrammatic processes are of particular interest to sociotechnical regimes because they operate 

in ‘machinic,’ connective terms, comprised of asignifying expressions. Guattari’s mixed 

semiotics allowed him to present modes of communication that resisted the “political motive … 

behind attempts to explain all encoding and message transmission in terms of linguistic 

language” (Watson, 2008, p. 47). This allowed scientific regimes to describe issues of 

materialism despite of signifying semiologies and provides a mechanism to resist processes of 

deterritorialization and overcoding.  

Other interpretations of asignification exist. The editors of Footprint’s 2014 issue 

dedicated to asignifying semiotics, “Asignifying Semiotics: Or How to Paint Pink on Pink,” 

explained that “[asignifying] signs do not represent or refer to an already constituted dominant 

reality,” but instead “simulate and pre-produce a reality that is not yet there” (Hauptmann & 

Radman). Examples of asignification and diagrammatism exist in Claude Shannon’s original 

theory of information, which excluded semantic content from communication in favor of “a 

technical one based on uncertainty” or noise and entropy ratios (Genosko, 2014, p. 13). Even as 
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Shannon strove to define a model for the technical transmission of information which 

“[eschewed] meaning,” Weaver imposed semantic content into Shannon’s technical process “by 

interpolating a semantic received between the engineering receiver and the destination.” 

Information transmitted between senders and receivers not only contend with entropy and noise 

at the level of the technical signal, but must, according to Weaver, through a process of 

“semantic decoding” incorporate noise at the level of ‘meaning.’ Guattari argued that the 

“dominant position” of information theory in linguistics, alluding to the Shannon Weaver model, 

focused on a “definition of language as merely a means of transmitting messages,” and the 

adoption of the model was an attempt for linguists in the humanities to be “scientific,” while also 

resisting the “interpenetration” of language with a “social field” (2011, p. 23). Genosko notes 

that Guattari “regarded information theory’s ‘skirmish’ with meaning as a ‘rearguard 

semiological conflict,’” implying that systems of signification are systems of domination (2014, 

p. 13). The transmission of information, in the Shannon & Weaver model, is a double-

articulation in the sense that any transmission is a signal at the asignifying level—the presence or 

absence of electrons or photons for example—and the derivation of meaning at the semantic 

level; both articulations are subject to noise and entropy. The history of the software crisis of the 

1950s and 60s demonstrated how the interference of one in the other—and vice versa—leads 

frustratingly just as easily to prosaic results as to paradoxical outcomes. 

Asignification and diagrammatism are important for sociotechnical regimes because they 

provide a means to communicate in a realm that can, at times, mitigate semantic noise. 

Connections between humans are principally—but not exclusively—governed by signifying 

processes. From a Guattarian (1984, 2011) perspective, connections are formed between things 

in both concrete and abstract ways. Natural encodings have direct connections to the real world 
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as physical connections, such as nucleotide pairs in strands of DNA; asignifying connections 

made as part of diagrammatic processes connect to the real through sign-points, e.g., the notes of 

sheet music refer to an axiomatic of intervals of frequencies of sound corresponding to octaves 

of notes and their materialization as a key on an instrument, a note on a sheet of music, an 

expression in a state of affairs. For software engineering and other sociotechnical regimes, 

development efforts employ a mixture of asignifying, diagrammatic processes, organized as 

axioms, which are indices providing access to the functions and propositions of a plane of 

reference, which is a complicated way of explaining how the communication in and around a 

problem and its conditions relies on asignification to facilitate clarity, while still referring to 

material evident in a state of affairs.  

Source code is an important type of communication for software engineering. Watson 

describes “computer code” as an example of a diagrammatic process, which begets the question: 

is it appropriate to ‘read’ code through semiotic practices from a Guattarian perspective? If we 

consider this issue from Guattari’s perspective, look at the role of his work in his collaborations 

with Deleuze, and then examine software engineering as a plane of reference, we shall see that 

the implications of their work establish ontologies and epistemologies for technics that excludes, 

both by definition and through active resistance, processes of signification. While software ‘is 

what it is,’ at the level of asignification, it is enfolded into signifying processes when it interacts 

with the human developer, tester, technician, user. If code expresses the presence or absence of 

signals that have ‘meaning’ only insofar as those signals refer to a plane of reference 

encompassing the axiomatics they refer to (e.g., discrete logic, machine instructions, realization 

as electrical signals, electron flows through transistors), there is no ‘signifying meaning’ for it 

beyond its use as it comes into contact with ‘the human’ in its immediate state of affairs (e.g., a 



www.manaraa.com

  144 

 

computer, how the software is used, how it affects the subjectivation of its users). The mixture of 

processes of signification in software engineering include signifying connections made between 

humans and machines, communication between developers, the management of the human 

resources marshalled for the development of software, of the wide and narrow scopes of 

practices for responding to proposals, and generating needs assessments, writing user stories, can 

only affect future iterations of diagrammatization if those iterations are incorporated—

axiomatized—into the plane of reference by which ‘code’ indexes—at which point semantics fall 

away. The diagrammatic process governing software development is the constant struggle 

between significations needing to overcode asignifications, while managing the noise that 

produces. Semantics can convolute and complicate the emergence of any product software 

developers work to actualize in a state of affairs. 

 

Collective Assemblage of Enunciation  

Guattari (1984) had a cynical perspective of technology, of mechanization, and 

particularly of computation, and is notable for being persuasively similar to a type of post-human 

rhetoric of ‘recursivity’ found in Kittlerian media studies. In Guattarian throught, ‘the machine 

apparatus’—whatever it may be in a given context—exists independently of the human and can 

control and possibly subjectivate and reorder the human’s position in a hierarchy to its eventual 

exclusion from that context4. The key to understanding Guattarian asignification lies in 

diagrammatism and diagrammatic processes in general, which reflect a kind of iterative network 

                                                 
4
 c.f. Kittler; the opening of Media After Kittler (eds. Ikoniadou & Wilson), which begins, “[the] question of 

technology has largely been conceived in humanist terms” (Ikoniadou, 2015, p. 1); the conclusion that Kittler’s 

interpretation of ‘protected mode’ in the eponymous essay is indeed the reality that we are all somehow “subjects of 

Microsoft Corporation” (Sale & Salisbury, 2015, p. xxv). Kittler’s explanation of ‘protected mode’ is an example of 

how Kittlerian-inspired research propagates a misinterpretation of a technological feature. 
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of decisions about what humans choose to axiomatize, and how they carried those decisions 

forward through machinic systems. Diagrammatism is a kind of “economy of signs” possessing 

“sense without signification” which effectively enables them to “simulate, ‘duplicate,’ and 

‘experience’ the relational and structural nodes of material and social flows precisely at the 

points that would remain invisible to an anthropocentric vision” (Guattari, 2011, p. 59). While he 

believed “[operations] performed by workers, technicians, and scientists will be absorbed, 

incorporated into the workings of tomorrow’s machine,” and asserted that “[human] work today 

is merely a residual sub-whole of the work of the machine” (p. 113), which neatly aligns with 

some theoretical and rhetorical elements of the ‘post-human’ favored first by McLuhan (1994) 

and later Kittler (1999), the way diagrammatic processes are ‘diagrammatized’ and operate in 

mixed semiologies often produces narratives diminishing the importance of human selection and 

iteration on what becomes a function on a plane of reference, desirable for its efficacy, desired 

because it produces results that demonstrate value in accordance with the propositions functions 

must attempt to answer, e.g., engineering and scientific efforts. An example of “a non-signifying 

semiotic would be a mathematical sign machine not intended to produce significations; others 

would be a technico-semiotic complexus, which could be scientific, economic, musical or 

artistic, or perhaps an analytic revolutionary machine” (Guattari, 1984, p. 75). Taken as a 

technico-semiotic complexus which is “not intended to produce significations” (emphasis 

added), asignification, axiomatics, and the diagrammatic processes which rely on them require 

an expansion of their definition which includes the reciprocity at work within their 

formalizations and inscriptions upon a plane of reference. Software engineering practices are a 

reciprocating interplay of human interactions with axiomatic expression: one shapes the other, 

and vice versa. The reciprocity is evident in Guattari’s nascent definition of asignification: an 
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“analytic revolutionary machine,” for instance, might today be evident in the practices and uses 

of Machine Learning (Alpaydin, 2016), which are axiomatized in the emerging sociotechnical 

regime of Data Science (Kelleher & Tierney, 2018). But what binds a ‘data scientist’ to Data 

Science, or a ‘software engineer’ to Software Engineering, and what shapes the expressions of 

their sociotechnical regimes? 

Asignification, as it resides in Guattari’s (2011) concept of an “assemblage of 

enunciation” (p. 45), plays a role in delimiting and shaping the signifiers expressed by a 

sociotechnical regime. Asignifiers play a role in signification greater than that which is belied by 

their axiomatization on a plane of reference, because they are inherent to any form of 

signification expressed by a regime: by consequently structuring and delimiting the forms of 

subjectivation used by a sociotechnical regime to individuate one identity type from another, 

they determine ‘meaning’ and ‘value’ both inside and out of a regime’s boundaries. Guattari 

(2011) developed the concept to examine connections between “expression” and “content,” 

which, he tacitly proposed, are “not attached to one another by virtue of the Holy Spirit” (p. 45). 

Assemblages of enunciation provide a basis—like a plane of reference—by which modes of 

“signification and semiotization” can hold or contain meaning relative to a state of affairs, a 

locality, an expression, or relation. In this way, conceptually a technical assemblage can be seen 

as the mechanistic exchange of data (e.g., “sign-particles”) between abstract and concrete layers 

within a sociotechnical regime. These exchanges explain how Individuated subjects, like titular 

‘software developers’ or ‘mechanical engineers’ are expressions and reflections of a ‘dominant 

reality’ (pp. 45-46), which gives weight to the signs “holding” (p. 45) the significance of their 

titles, and how those titles are themselves a reflection of a “certain mode of social organization” 

(p. 46). Thus identity, or a type of ‘individuation’ and ‘subjectivation,’ is a processual reciprocity 
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between ‘asignification’ and ‘signification’ in an assemblage of enunciation. Guattari created a 

set of tables, illustrating conceptual corridors for loose divisions between systems of 

signification and asignification, shown in Figures 4.1. 

 Semiotic 

components 

Functions of 

content 

Semiotic 

components 

Articulations of 

content and 

expression 

Interpretive 

generative 

transformations 

A. Analogical Semantic A. Analogical Field of 

interpretance 

B. Semiological 

linguistic 

Signifying B. Semiological 

linguistic 

Field of 

significance 

(double 

articulation) 

Non-interpretive 

generative 

transformations 

C. Symbolic 

intensive 

Illocutionary, 

indexical and of 

passage 

C. Symbolic 

intensive 

Illocutionary, 

indexical and of 

passage 

D. Diagrammatic Asignifying 

sense 

D. Diagrammatic Asignifying 

sense 

Figure 4.1: Guattarian Assemblages of Enunciation (reproduced from Guattari, 2011, p. 57) 

 

While the categories in Figure 4.1 are distinct, e.g., ‘Diagrammatic’ or ‘Analogical,’ Guattari 

(2011) admitted that any one category tends to expand and seep into its neighboring categories, 

because “[certain] contents are dominated by redundancies of resonance, others by redundancies 

of interaction” (p. 54). This means that “[an] assemblage of enunciation” is “derived sometimes 

from the side of signification and sometimes from the side of diagrammatism depending on the 
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transformations of its composition.” An assemblage of enunciation comprises all the semiotic 

components in interpretive generative transformations and non-interpretive generative 

transformations; the enunciation itself is a materialization of the “fluxes, the territories, the 

machines, the universes of desire” of a “plane of consistency,” which account for how “different 

ways of existence of systems of intensity do not spring from transcendental realities but from 

real processes of generation and transformation” (1984, p. 290). The idea is that expressions an 

assemblage of enunciation produce are always, in some way, of a ‘mixed semiotics’ which come 

to affect the world; the significance of asignification here is that utterances or expressions are in 

some way planned, are diagrammed and enacted. Deleuze and Guattari (1987) used the word 

‘diagram’ to describe an open process by which to find new lines of flight in, essentially, a 

capitalist axiomatic, to use Guattari’s language, that individuals could use to find new lines of 

flight and means of escape from otherwise despotic forms of subjectivation: “Connect, 

conjugate, continue: a whole ‘diagram,’ as opposed to still signifying and subjective programs” 

(p. 161). And here, they explain that assemblages can be tilted and made to “pass over to the side 

of the plane of consistency,” thereby yielding new expressions. Diagrammatism and 

asignification are as important as signification in the mixed semiotic systems espoused by 

Guattari, such that diagrammatic processes are how expressions—enunciations—emerge upon a 

plane of consistency, at a certain point in time and space, and are actualized, materialized. For 

sociotechnical regimes, diagrammatic processes allow plans of subjectivation to be formed and 

imposed upon the subjectivated, which is a way of demonstrating Kittler’s assertion about media 

determining human situations, or McLuhan’s recognition that humans, woven into systems of 

automation, produce something new. 
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Diagrammatism in McLuhan and Kittler: Consistency, Automation, and the Digital 

While Guattari’s arguments and definitional work about asignification—especially 

considering his Machinic heterogenesis essay (1995)—places him closer to Kittler than 

McLuhan in terms of the role of the human in machinic assemblages, in that humans are 

generally a product of their tools, it is difficult to escape the role of reciprocity inherent in 

diagrammatic processes. Genosko (2014) noted that  

decentring [sic] human subjectivity for the sake of machinic proto-subjectifications is one 

of the broad theoretical goals of Guattari’s philosophy. The field of asignification 

becomes for Guattari that of non-human enunciation in and among machinic systems: 

strictly speaking, ‘equations and plans which enunciate the machine and make it act in a 

diagrammatic capacity on technical and experimental apparatuses.’ This vast region 

includes everything from machine language ‘fetch and execute’ routines, to system 

interoperability at different levels of exchange, or to multi-levelled cybernetic loops. 

These are scientifically formed by computer scientists and systems engineers. (pp. 17-18) 

The significance of Genosko’s interpretation of Guattari’s arguments for asignification allows 

machines to speak, in the sense that they communicate and mediate human interactions. 

However, ‘multi-level cybernetic loops’ implies a reciprocating process, one which ‘loops’ from 

some point to another point, governed by responsive logics that respond according to feedback 

they are designed to receive. McLuhan (1994), in Understanding Media, firmly located the 

human at the center of ‘cybernetic loops’; the human brain was the center of any reciprocating 

circuit. That machines now communicate independently of humans—at least on the surface—

indicates a different and purely machinic layer of depth to the kind of automation he proposed, in 

that electricity and power are being used independently of human agency. But, as Guattari 
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argued, due to processes relying on asignification, many things have always been independent of 

human agency. Guattari favored soil metaphors for describing asignification and signification, 

because soil not only implies that they exist alongside one another in mixed proportions 

(Genosko, 2014), but describes how information does not need signification, and can be 

transmitted independently of systems of signification. As such, asignification is central not only 

to technological diagrammatization, like the work of ‘computer scientists and systems 

engineers,’ or of mechanical engineers designing apparatuses for specific material tolerances and 

intended uses, but to the emergent diagrammatization of machinic ontologies in general, because 

they must exist to both interfere with and enable the transmission of signals and meaning to and 

from virtual and material strata. For example, the systems of DNA, RNA, and mRNA function 

independently of any intent, but adhere to a pre-signifying diagrammatic which governs the way 

nucleic acids pair off or unwind: the bonds between acids, as they emerge, are what they are 

independent and apriori of any signification. Systems of asignification can be both intentional 

and designed, or emergent and pre-signifying properties of a system of reciprocal exchanges, 

e.g., the tests and measures used to evaluate the efficacy of a function or axiomatic (set of 

functions as praxis) in response to a proposition.    

One thing that binds Guattari, McLuhan, and Kittler together in a way that helps conceive 

of diagrammatic processes as reciprocal praxis within a sociotechnical regime is the concept of 

the feedback loop, be it human, nonhuman, or cybernetic. McLuhan and Kittler’s definitions of 

‘cybernetic’ differ in terms of ‘hopefulness’: the timbre of McLuhan’s perspective about the 

symbiotic role of technology in human life leads him to assert that the consciousness of an 

artificial intelligence “would still be one that was an extension of our consciousness, as a 

telescope is an extension of our eyes” (1994, p. 351). Kittler, on the other hand, with his 
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sardonic-but-entirely-serious quip about the “so-called Man” (1999, p. xxxix), views the human 

as a product of the telescope, or the human as a product of the artificial intelligence, because of 

the ways those technologies mediate and “determine our situation.” Guattari certainly sees the 

human in terms of “subjectivation,” such that even systems of values, e.g. “religious, aesthetic, 

scientific, ecosophic,” become incorporated into the machinic systems which are “not only 

cybernetic feedback” in terms of organic humans, but as the assertion of a system’s becoming, its 

heterogenesis (p. 54). But While Guattari decenters the human subject from machinic ontologies, 

he shares a peculiar ontological commitment with McLuhan, in terms of autopoiesis. A crucial 

argument McLuhan (1994) made to support his claims about the recursive nature of mediums 

had to do with ‘automation technology,’ which “creates roles for people, which is to say depth of 

involvement in their work and human association that our preceding mechanical technology had 

destroyed” (pp. 7-8). Automation is information, and as such, requires a type of learning and 

involvement that is always ‘on’ and fully immersive; for entertainment purposes, automation 

creates “mass media,” whereas for industry automation causes “scientific revolution” (pp. 346-

347). The way McLuhan wrote about automation demonstrated the difference of hot and cold 

mediums, which were ‘shallow’ and ‘deep’ in terms of how individuals participated with them. 

Television was a ‘cool’ medium because it relies on and creates “depth structures in art and 

entertainment alike,” which lead to “audience involvement in depth” (p. 312); viewers were 

involved with cool mediums in ways that required electricity and the servomechanism to 

connect—neurologically—one person with an assemblage of machines. The “cybernation” 

McLuhan discussed was not only the operation of “electric energy” being “applied indifferently 

and quickly to many kinds of tasks” (p. 350), but emphasis of the centrality of ‘human’ to all 

layers of interaction of a system where information transmission was instantaneous (and perhaps 
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unambiguous). The de-centered human Guattari sought recognized the role of entropy and 

noise—of chaos—in the messy sedimentary layers of asignifying and signifying systems, 

whereas McLuhan ideally saw automation as an extension of human centrality and stability, 

which is more tenable in an orderly state of affairs.  

While McLuhan and Guattari each had different attitudes toward technology, they both 

recognized similar ways of encoding information into horizontal, or flattened, topographies that 

entangled human nodes in one-to-many, and many-to-many relationships of signification and 

asignification. Both Guattari and McLuhan are interested in what new expressions a system can 

yield. At one level there is a virtual, abstract universe of theory, and then there are the actualized 

utterances of that theory in the world; from these abstract topographies of encodings a thing 

emerges, be it human subjectivity, a form of subjectivation, or a printed circuit board. Guattari 

developed the idea of ‘consistency’ as a way to “precisely define an assemblage in relation to its 

components and the fields in which it evolves,” so that we could gain a sense of its “existential” 

qualities (p. 47). The concrete expressions of an assemblage—the product of subjectivation of a 

sociotechnical regime, for example—are premised in a multiplicity of ways. Specifically, their 

consistency relies broadly on the idea that their expression at a specific point in time and space 

emerges from a combination of molar, molecular, and abstract fields: Guattari uses particles in 

“contemporary physics that are ‘virtualized’ by a theory that only preserves their identity for a 

negligible time” to demonstrate how, as a “diagrammatic effect” a particle is both concretized 

expression of matter and the product of abstract displacement. As seen in Figure 4.2, Guattari 

used the idea of ‘resonance’ to imply signifying interactions—in this case, signifying fields—and 

classified “machinic redundancies of interaction” as the realm of sign particles: 
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 CONSISTENCY 

 molar molecular abstract 

redundancy of 

resonance 

 

signifying fields semantic fields capitalistic 

abstractions 

machinic 

redundancies of 

interaction 

stratified fields components of 

passage 

constellation of sign 

particles (abstract 

machines) 

Figure 4.2: Guattarian Fields of Consistency (reproduced from Guattari, 2011, p. 51). 

Automated interactions, or “machinic redundancies of interaction,” rely on a combination of 

stratified fields at the molar level, components of passage at the molecular level, and 

constellation of sign particles at the abstract level to express themselves (either virtually or 

concretely) (p. 51). The word “redundancy” is important to unpack, because not only does it 

resonate with McLuhan’s automation, itself premised on new bodies forming from deep 

connections to and from wide topologies of interaction, but because it operates in the molar 

domain, where “elements are strongly crystallized and stratified, allowing flows of redundancies 

to develop” like “signifying effects” or “surplus value[s] of stratified codes” (p. 47). Due to how 

Guattari uses the word, redundancy implies repetition, similarity, and self-affirmation: a 

‘redundancy of resonance,’ as shown in Figure 4.2, would mean that, due to capitalistic 

abstractions, e.g., the nature of capitalism itself, the connection of a signifier to its semantic 

content is truncated by an unnatural imposition, which becomes accepted because its 

implementation in an assemblage is inherent to many components across its strata. Guattari 

confirms this usage by explaining how capitalistic abstractions are “a cornerstone of signifying 
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resonances and semantic fields” by operating at a “lethal level of abstract machinisms … which 

does not model the universe of representation” (p. 49). To make something new, one must create 

“new machines of diagrammatic signs-particles” to interfere with “semiotic fields and capitalistic 

abstractions” (p. 50). Consistency, then, provides the basis by which an expression of a system—

like the new human for McLuhan—is made possible by the interaction between the signifying 

and asignifying planes of an assemblage of enunciation. 

 

Diagrammatic Processes, Digital Technology 

Systems of asignification underlie diagrammatic processes, and Guattarian 

diagrammatism explains aspects of McLuhan’s and Kittler’s definitions of digital technology for 

media studies. While systems of asignification like diagrammatic processes are actualized in 

nature—for instance, the expression of a seed growing in soil according to its immanent genetic 

components and facilities intersecting minerals appropriate to its germination—technology is an 

example of humanity co-opting asignifying principles for its own uses. As Watson (2008) 

explains, Guattarian diagrammatics are not only asignifying, but represent “processes of 

recording, data storage, and computer processing” (p. 12), all of which function with binary 

thresholds: like the seed sprouting or dying according to the presence or absence of a vital 

mineral at sufficient quantities in its soil, ‘recording, data storage, and computer processing’ not 

only require the presence of electricity, but further inscribe upon media an actualized binary 

state. Meaning does not, at the level of digital information, signify anything; rather, it reflects the 

presence or absence of a signal exposed, referentially, to an axiomatized plane.  

Digital information in media is meaningless, at the semiotic and semantic levels, without 

first referring to the technical and social practices used to mobilize and deploy a plan of action 
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(diagram) to use the correct interpretations (axiomatics) which allow ‘meaning’ to be extracted 

from that media. Axiomatics can be argued to be a type of diagrammatic effect, in the Guattarian 

sense, by providing the means to order noise, the functions which transform the noise into 

asemiotic responses to propositions, which then—through a kind of poeisis—yield their results 

to usage, to utilization. The level of signification intersects with processes of asignification at 

points where diagrammatic processes intervene in the human world (notwithstanding machine 

‘intelligence’ capable of interpreting metaphor, thereby confusing itself). The process of referral 

provides a basis for—in programming terms—strongly typing a set of signals such that they can 

be recognized, individuated, as one type of data versus another. The metaphor of ‘typing’ is 

helpful for understanding Guattari’s (2011) concerns with the integration of the computer “into 

the complexes of enunciation” (p. 103). He believed—or was at least concerned—that “it will 

become almost impossible to make a distinction between human creativity and machinic 

invention” (p. 103); typing, as a process of individuation at an asignifying level, allows us to 

deflate the idea of ‘machinic invention,’ which is the tuning fork by which Guattari’s arguments 

resonate with Kittler’s (1990; 1999; 2010; Kittler & Grumbrecht, 2013).5 Kittler (2010) asserted 

that “[there] are no longer any differences between individual media or sensory fields: if digital 

computers send out sounds or images, whether to a so-called human-machine interface or not, 

they internally work only with endless strings of bits, which are represented by electric voltage” 

(pp. 225-226). At the level of the digital computer, this is true: at its most granular, asignifying 

level, all digital information processed by computers are ‘endless strings of bits,’ as Kittler 

states. But he conflates ‘individual media’ with ‘sensory fields,’ which does not make sense until 

                                                 
5
 As Winthrop-Young (2011) explains, Kittler saw the cultural strife during the 1960s as expression of “discursive 

and technological regimes which create and shape the so-called subjects who remain blissfully unaware of what 

makes them speak, think, and protest” (p. 25), which implies machines speaking through humans.  
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the introduction of a diagrammatic effect on media: affects and precepts distinguish themselves 

and are subject to interpretation by means of the presence or absence of a type of signal (Deleuze 

and Guattari, 1994).  

Digital information, to transcend to a type, must satisfy diagrammatic requirements 

before it can be processed by a series of axioms, and only after its conformance to those 

requirements are validated is ‘data’ individuated as ‘video’ or ‘audio’ or ‘database’ or ‘text.’ Just 

as “sound” requires the presence of a continuous, analog waveform to be expressed as its type 

and satisfy the diagrammatic requirements of an auditory sensor, data—to transcend to a type, to 

become more than noise and escape entropy—must satisfy a set of diagrammatic requirements 

before it can be individuated into an ordered form. At the level of bits and bytes, data is 

meaningless noise until it is transformed by diagrammatic processes into states that can be used 

and employed, either to further other diagrammatic processes, as the presence or absence of 

some kind of result (in a discretely logical sense), or through the transformation and marshaling 

of that noise into something of significance for human interaction (i.e., MP3 audio files, or the 

probability that one political candidate will win over another).  

Machinic invention seems to be premised on the idea that the creation of a thing—a new 

axiom perhaps that is used to affect the shape of a material outcome, like a new computer 

microchip—somehow hides the intervention of the human from its ontological telos (the factors 

that lead to the axiomatic realization) and is difficult reasoning to follow or accept from the 

perspective of art, philosophy, and science that Deleuze and Guattari (1994) argued. The 

axiomatics of the plane of reference used to create the digital computer were not only iteratively 

improved but refined over time based on humans observing the application of those axioms to 

the actualization of things. Planes of reference refer to the states of affairs from which they 
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emerge, and therefore have material and social components informing the practices (axioms, like 

problem-solving approaches) and the propositions and functions which they incorporate; planes 

of reference rely on reciprocal referents. The residence of an axiomatized function upon a plane 

of reference corresponds to the positive abilities of a thing’s actualization to further improve its 

future axiomatization, which is crucially the materialist, empirical epistemological and 

ontological values of science. Kittler’s assertions about the ‘recursivity’ of technics had more to 

do with the idea that the development of technologies evolves over time through reflexive 

practices. Recursion, from a software developer’s perspective, does not hold the same meaning: 

recursive functions call themselves, and the same function calling itself is closed to revision. So, 

it does not follow that recursivity, in the borrowed-programming parlance he affects, creates 

change beyond the results the recursive function was bound to produce. Functions improve 

through iteration and versioning: work that is visited multiple times is said to be iterated upon; 

work that reaches a milestone, such as being feature complete according to a design document, 

becomes a new version.  

Deleuze and Guattari (1994) recognize the value and limitations of numerical sets: 

axioms, at a certain point, produce entirely expected results due to, in mathematical terms, the 

predictability of their outcomes in accordance with set theorem and limits. The functions 

employed by axioms change according to material encounters in a state of affairs: “[functions] 

are, first of all, functions of states of affairs and thus constitute scientific propositions as the first 

type of prospects: their arguments are independent variables on which coordinations and 

potentializations are carried out that determine the necessary relations” (p. 155); and further, 

“[the] differences between the physico-mathematical, the logical, and the lived also pertain to 

functions (depending on whether bodies are grasped in the singularities of states of affairs, or as 
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themselves singular terms, or according to singular thresholds between perception and 

affection)” (p. 157). The propositions and functions that express the ‘meaning’ of source code or 

the design of microprocessors reside in a technical regime that is, in its own way, dominated by 

systems of signification, because they cannot be extracted from the state of affairs in which they 

reside. Expressions of diagrammatism, at the asignifying level, have ‘meaning’ relative only to a 

plane of reference: source code, for example, functions relative to planes of discrete logic, to 

syntax, to a compiler, to a microprocessor’s architecture, whose expressions intersect at sign-

points marking the presence or absence of a binary signal in response to requests for those 

signals. Signification is the domain of what humans do with the source code, when it executes on 

a computer (e.g., ‘running’ as a process) and affects change in a state of affairs, or in reading it 

for cultural meaning, analyzing it for patterns and practices reflecting biases, or for insights into 

idiosyncratic choices by a programmer. But at the level of asignification, source code is 

referential expression that satisfies diagrammatics which emerge from formal axiomatizations to 

solve propositions and functions in terms free from traditional significations.  

For media studies, the issue with source code, and with any asignifying semiotic system, 

is that at some point their contents are translated into signifying semiotic domains, and that is 

where this process reciprocates. What makes Kittler’s reasoning compatible with Guattari’s 

asignifying and diagrammatic concepts is the recognition that raw data, which otherwise looks 

like noise, can be made to represent different ‘sensory fields’ with sufficient processing, which as 

Guattari (2011) states is how a computer can “deterritorialize sign machines so that the former 

end up acquiring a sort of asignifying transparency which perfectly enables them to be ‘molded’ 

in their techniques of representation and recomposition to the singular traits of matters of 

expression” (p. 104). So, when seen in a certain light, the ideas of the ‘so-called man’ or 
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decentered human that Kittler and Guattari espoused are attractive but are shone to be 

inconsistent with the premises of diagrammatization and the iterative behaviors and practices 

involved in the recognition, creation, and inscription of axiomatics upon a plane of reference. 

From the perspective of propositions, functions, and their state of affairs, a new version of an 

axiom—meaning an aspect of the axiomatic refers to a modified function on the plane of 

reference—is reincorporated into that function iteratively if the quantification and concretization 

of a thing is deemed ‘positive’ in accordance to another set of axioms designed to measure the 

thing. In this regard, Deleuze’s (1994) problematic focus on difference and repetition is suited to 

the analysis of planes of reference because it, combined with Guattari’s mixed semiotics, lead to 

the concept of transduction, which is a way to encapsulate the actions and consequences of 

intersecting groups of software engineers and customers.  

Transduction is based on the behavior of electronic transducers, which translate a 

continuous analog value, like force, into a series of steps, which are discrete approximations 

within a minimum and maximum range of values. Transduction is ideally asignifying, because it 

involves a point of contact at which the translation of a natural encoding or signifying 

semiological value into a system of asignifying values occurs; and it is ideally signifying, 

because it represents a point of contact between an asignifying system where a translation is 

endowed with meaning. As a metaphor, it describes what happens when an agent of a 

sociotechnical regime groups works to negotiate two sets of problematics: their own, and their 

clients. The significance of Deleuze and Guattari’s theory for the study of software engineering 

is two-fold: first, their recognition that processes connect to other processes at many points, 

rhizomatically, across a plateau which allows source code to be seen as just one product of the 

many efforts contact between a software developer and their client generates; and second, the use 
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of problematics to understand the impositions of competing ontological and epistemological 

commitments. Combined, it becomes evident that there is a problem inherent in communicating 

problems between developers and clients which is elucidated when one looks at how different 

their problematics intersect, are negotiated, and are understood.  

 

Transduction 

Science is haunted not by its own unity but by a plane of reference constituted by all the 

limits or borders through which it confronts chaos. (Deleuze & Guattari, 1994, p. 119) 

 

The previous section described asignification, part of Guattari’s (1984, 2011) model of 

mixed semiotics, as fundamental to expressions generated by a sociotechnical regime. By 

comparing aspects of McLuhan and Kittler’s discussions of technics, evidence for the presence 

of asignification and diagrammatism was found in their interpretations of machine and human 

interactions and scientific developments over time. This section describes how transduction 

translates, converts, or casts one type of semiotic component into another. It starts by defining 

what transduction is, looking at its conventional definition and examples in Guattari’s and 

others’ works, and turns  to an analysis of the term in the framework of limiting fields and sign-

points offered by Guattari (1984, 2011); it then examines how the discrete portion of 

transduction posits the necessary imposition of limits on a continuous flow of values as a basis 

for translation; and finally it explores how signification arises from asignifying systems using the 

emerging Data Sciences’ discipline as an example. This section works to establish the signifying 

aspect of my exploration of the asignifying and signifying interactions at work in software 

engineering.  
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Transduction is a helpful metaphor for understanding and describing the consequences of 

a double articulation of a problematic. Deleuze and Guattari’s (1994) assertions about the design 

and implementation of a plane of references in conjunction with a state of affairs, especially in 

terms of how semiotic content is translated and made to become asemiotic content, and vice 

versa. But transduction, more importantly, sets up a means for understanding how iteration 

revises the axiomatics on planes of reference when signifying signs, the natural product of 

human interaction, get routed through diagrammatic processes that convert them into asignifying 

signs. Transduction also provides a means for understanding how functions and concepts 

intersect—and why they must, as Stengers (2005) observed, intersect “only after each has 

achieved its own specific self-fulfillment” (p. 151). The term “transducer” describes an 

electronic device that “converts variations in a physical quantity, such as pressure or brightness, 

into an electrical signal, or vice versa” (“Transducer,” Oxford Dictionaries). Examples of 

transducers are found in smartphones to translate forces, such as acceleration, into quantifiable 

values that can be acted upon by software: the Apple iPhone uses an accelerometer (the 

“CoreMotion” accelerometer) to determine when the orientation of its screen is downward or 

upward facing along a Z-Axis (Jason, 2016; Apple, “Core Motion,” n.d.), allowing its software 

to enable or disable its screen relative to how it is held by its user. The principle operation of a 

transducer is to convert one type of signal into another, and is therefore not concerned, in its 

actualization, with the ‘meaning’ behind its conversion. Its role is rather to fulfill the “first 

[functive]” requirement of defining “the limit and the variable” and the “relationship between 

values of the variable … with the limit,” so that its imposition into the actual is always in 

relation to its axiomatized inscription on disciplinary plane of reference (Deleuze & Guattari, 

1994, pp. 118-119). Transducers are great devices for demonstrating how science “relinquishes 
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the infinite, infinite speed” of philosophical concepts to “gain a reference able to actualize the 

virtual” (emphasis maintained, p. 118), because until the imposition of a limit upon a defined 

variable, force has no ‘value’ and is virtual, continuous, and uncoded energy. As it becomes a 

function, ‘force’ becomes axiomatized in that it has a set of associated practices that allow it to 

intersect with and work upon a state of affairs.  

One of the principle assertions Deleuze and Guattari (1994) make about disciplinary 

“Thought-form[s]”—the demarcations between art, philosophy, and science—are that they each 

are products of respective approaches to ‘chaos’ (Arnott, 1999, p. 49). Chaos, or “the virtual as 

Deleuze was fond of calling it,” was not merely a “lack of order,” or even something seen as a 

“negative,” but was treated “as a kind of pool of resources from which thought in its various 

forms extracts or ‘clinches’ new ideas, new ways of thinking” (p. 50). But the primary difference 

between concepts and functions, and the reason why they intersect only when fully realized in 

their respective thought-forms is that concepts are comprised of “inseparable components 

condensed” into themselves, while functions are “distinct determinations that must be matched in 

a discursive formation with other determinations taken in extension (variables)” (Deleuze & 

Guattari, 1994, p. 121). This means that, for science, limits and variables are derived from 

relations with a “state of affairs,” which are “formed matter in the system” which may be 

“mathematical, physical,” or “biological” in nature, such that the idea of “reference” itself is a 

manifestation of the “form of the proposition” (p. 122). Deleuze and Guattari argued that states 

of affairs are “functions,” and are themselves “a complex variable that depends on a relation 

between at least two independent variables.” Concepts relate to other concepts, are expressions 

of different conceptual “personae” (thinkers, like Descartes, Hegel, or Nietzsche), and intersect 

with other concepts across, potentially, many planes of immanence (p. 76). Concepts, on one 
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hand, collide in arguments of relevance or dominance with each other across personae and their 

respective planes (e.g., “philosophy always works blow by blow”), they do so at infinite speed. 

Functions, limits, and variables, on the other hand, are products and expressions of the slow 

speeds the sciences use to evaluate materiality. Speed is the ultimate bounds on a process used to 

determine, select, and evaluate functions: for science, time is essentially stopped to allow aspects 

of the virtual to be observed, whereas philosophy relies on infinite speed to allow for radical 

traversals of potential relationships between concepts upon their plane of immanence.  

One aspect of the creation of concepts implies a type of thinking and activity that is 

relevant to a discussion of transduction and its scientific application and origination. “Laying 

out, inventing, and creating constitute the philosophic trinity,” Deleuze and Guattari (1994) 

wrote, which are “diagrammatic, personalistic, and intensive features” (p. 77). This implies that a 

type of asignifying process is at work when “laying out” a plane of immanence: for the idea they 

represent, concepts and their components are mapped in such a way that their expressions are 

formalized so that they can both be referred to later through new traversals and intersections with 

other personae and planes of immanence. Is there a difference between philosophical and 

scientific information at the diagrammatic level? It could be that the organization and storage of 

information itself is asignifying—the ink and shape and form of character sets or script upon 

paper, the bits encoded into nonvolatile memory cells—but that the use information stored and 

organized in an asignifying system becomes signifying as it is translated into a signifying 

semiological domain.  

Evidence that ‘transduction’ operates in the arguments and contributions Guattari brought 

to his collaborations with Deleuze is found in his work on collective assemblages of enunciation 

and “signs-particles” in The Machinic Unconscious (2011, p. 47). An ‘assemblage of 
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enunciation’ is not language itself, e.g., ‘enunciation,’ but the components that provide language 

meaning at a specific point in time relative to a place: “semiotization, subjectification, 

conscientialization, diagrammatism, and abstract machinisms” (p. 45); assemblages of 

enunciation operate somewhat independently from the “plane of content upon which they are 

inscribed,” such that “their semiotic capacity for ‘holding’ a given subset of the world” depends 

on “their angle of significance in relation to the local conditions of the semiological triangle.” 

Guattari’s model of signification means that the meaning signs ‘hold’ are contingent on 

references made to “a worldliness,” a manifold of components and their exchanges relative to a 

place in time and space, and that such relativity means that no “universal world” exists in which 

acts of enunciation produces the same meanings, the same signs of holding (p. 46). In an earlier 

essay, Guattari (1984) explained that “significations do not come from heaven, nor do they arise 

spontaneously out of a syntactical or semantic womb. They are inseparable from the power 

formations that generate them in shifting relationships of power. There is nothing universal or 

automatic about them” (p. 166). Following this reasoning, Guattari’s (2011) assertions that not 

only do components within an assemblage of enunciation have to at some point convey signals 

and inert or actionable meaning to each other, but that such conveyance is a result of ‘signs-

points,’ which are a “diagrammatic effect” makes sense (p. 47), because it provides a means of 

tracing transformations across “an interweaving of several such systems” as “a mixture of 

semiotics” (1984, p. 166). This implies that systems of asignification, e.g., diagrammatism and 

diagrammatic processes, inhere in, delimit, and govern assemblages of enunciation, which 

themselves are constructed relative to systems of power. 

‘Signs-particles’ are the Guattarian mechanism of exchange between mixed semiologies 

of the real, the human, the abstract, the natural, the machine. They move and convey and relate 
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aspects of values or information—data—whereupon “abstract machines ‘charge’ themselves 

with redundancies of resonance (signification) or redundancies of interaction (‘real’ existence) 

depending on whether they are fixed and rendered powerless in a semiological substance or 

whether they inscribe themselves upon a machinic phylum” (p. 47). Machinic phylums are an 

area where Kittler and Guattari resonate: media determine our situation; “the web of history … is 

the machinic phylum,” the aggregation of merging of the “military machine,” “technological 

innovations,” and “scientific revolutions” (Guattari, 1984, p. 121). To Guattari, the “machinic 

power of desire was, always and everywhere, already there” and thus, in a Kittlerian vein, 

determine our situation, always. And thus, our situations—our enunciations—are relative to 

proximate power structures. However, regardless of the synergy between these concepts, it is 

important to note that where Guattari (2011) is concerned, “all … assemblages of enunciation 

involving the human world are mixed” (p. 54), but that “abstract machines are never definitively 

bound to fixed and universal coordinates; they can always ‘pull out’ and re-emit quanta of 

possibility” despite being subject to diagrammatic processes and their effects (emphasis added). 

This implies that, where humans are concerned, transduction is a valid metaphor for examining 

what happens to signals and values in mixed semiotic systems, because something happens to a 

sign-particle (singular) or set of signs-particles within those systems that provides a means for a 

‘sign’ to escape the referent ‘the’ effect a diagrammatic process seeks to impose (deterritorialize, 

overcode) upon what is ultimately produced by an enunciation.  

Assemblages of enunciation supports the pragmatic idea of how identities and things are 

produced and inducted—transduced—by sociotechnical regimes by providing a mechanism for 

explaining how matters of expression are transduced to and from those regimes. Guattari (2011) 

mapped out three common pragmatic fields, demonstrating how matters of expression pass 
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through them (or into them) on their way to being assembled or incorporated expressions, which 

are seen in Figure 4.3 below: 

 assemblage of 

enunciation 

semiotic components pragmatic fields 

Field a territorialized icons and indexes symbolic 

Field b individuated semiological triangle signifier 

Field c machinic collective sign particles diagrammatic 

Figure 4.3: Three Limiting Fields (reproduced from Guattari, 2011, p. 60) 

Matters of expression move to and from these fields: e.g., an expression ‘produced’ by a field 

moves from the assemblage of enunciation, to the semiotic components, and through the 

pragmatic fields before being expressed. This means that, to become asignified, to be encoded 

within a machinic collective, an expression passes through a diagrammatic process yielding 

appropriate sign particles which are compatible with that given machinic collective; something is 

taken apart and made to be compatible and inscribable when a basis for compatibility exists. 

Conversely, an asignifying expression, to be incorporated in an individuated assemblage of 

enunciation, must pass through a signifying process, becoming subject to the semiological 

triangle before being recognized as an encoded part of the given individuated assemblage of 

enunciation. This is important for the concept of transduction, because it demonstrates how 

Guattari was thinking of conversion at any stage of enunciation. Guattari proffered the notion of 

‘limiting fields’ as a way to examine the production of an enunciation by respecting “the singular 

traits of each matter of expression” involved in its emergence (2011, pp. 60-61). Limiting fields 

are pragmatic and “result from the articulation of modes of encoding and from an inexhaustible 

formalization of a substance of universal expression” (p. 60). The purpose of these fields, which 
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are pragmatic in nature, e.g., “pragmatic fields,” or “pragmatic rhizomes” (pp. 60-61), are to 

coalesce matters of expression into semiotic action: they determine the construction of what is 

enunciated in a state of affairs. As a pragmatic field, a signifying or diagrammatic process is the 

real construction or deconstruction of an enunciation: a linguistic signifier, for the fact that it is 

expressed and concretized as audible utterance or inscription on paper or in the digital realm is 

indistinguishable in terms of its constitutive process from the “selection of the raw materials out 

of which it will be synthesized” used to compile source code into executables from electrical 

capacitances (DeLanda, 2010, p. 32). The reading and writing of source code, i.e., programming, 

can broadly be seen as what is expressed and incorporated by a sociotechnical regime in that it 

demonstrates how transduction is a process of what constantly determining what is and is not a 

‘valid’ (e.g., legible) expression to and from the assemblage of enunciation incorporating the 

basis by which its symbols and signifiers codify meaning.  

 

Necessary limitations 

Transduction is an effective way to de-fetishize source code and programming by 

providing a theoretical basis for interpreting ‘code’ and ‘programming effort’ as a translating 

effect or form of mediation between different communicative and technical domains. As such, 

transduction is a succinct metaphor for describing how a sociotechnical regime grapples with an 

affirmative idea of chaos, as that which is not entropy so much as potentiality. In considering 

transducers as a scientific response to chaos, they become a way of thinking about interaction 

that excludes more than it includes in terms of what is evaluated and converted. Transducers 

operate processually upon the virtual by limiting potentials and giving form to a variable, so that 

its product, its output—the variable of its effort—represents only what it is designed to 
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recognize, within a set of thresholds. Transducers can also be thought of as points of intersection 

between concepts and functions, in instances where definitions of ‘force’ or ‘momentum’ reside 

in respective planes of reference and immanence. The application of diagrammatic processes to 

material encounters in the real world can be an act of reading, interpreting, and applying 

technical knowledge contained in specifications and trigonometry books to ‘real world’ problems 

of levers or rotational velocities and the avoidance of entropy; so, while concepts operate at 

infinite speed (Deleuze and Guattari, 1994), functions—because of transduction—demonstrably 

work to slow time down. As a type of process, transduction is used to convert the type of 

knowledge gained from observations of a function’s deployment, diagrammatically, to real world 

problems to the iteration and versioning of the functions and propositions inherent to those 

diagrammatic process. This is the circular form of iteration which allows scientific 

sociotechnical regimes to advance. What remains to be seen, however, is how the episteme of a 

technical regime chooses to define its transducers, because diagrammatic processes, at some 

point, intrude upon and intersect with signifying processes. Through interaction, new meanings 

are rendered, concomitantly increasing semantic noise. Signifying processes—like the needs 

assessment discussions between project managers and customers—in turn, must produce a type 

of asemiotic knowledge that intersects and interfaces with diagrammatic processes (e.g., product 

specifications and requirements). In this way, a diagrammatic encounter in a world that is full of 

semantic ‘noise,’ from the perspective of asignification, can be stripped of signification so that 

an axiom, a function, or the shape and expression of a proposition can be revised, its asignifying 

map of connections iterated, or disconnected from other points on a plane of reference entirely.  

The limiting of signification by a diagrammatic process gives rise to the idea of ‘axiom’ 

as algorithm, and transduction as the method by which such a process manifests itself in the 
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world, and how information is transmitted to and from the process. Transduction is compatible 

with Deleuze and Guattari’s concept of “double articulation” (p. 40, 1987) which as DeLanda 

(2010) explains, is concerned with how materiality expresses identity (p. 32). Identity is 

important because, from the perspective of a plane of reference, it serves to index—like an 

ordinate—the function required by an axiom to respond to a proposition. DeLanda describes 

double articulation in relation to emergent principles: it “refers in the first place to material 

expressivity,” to the properties that make matter “so dramatically expressive,” and secondly, it 

refers to an articulation “that consolidates the ephemeral form created by the first and that 

produces the final material entity defined by a set of emergent properties that express its 

identity” (p. 32). DeLanda recognized that Deleuze and Guattari “used a variety of terms to refer 

to each of these two articulatory operations,” and so defined the first articulation as 

“territorialization,” and the second as “coding” (p. 33). Explained in turn, territorialization 

derives from Deleuze and Guattari’s (1994) use the word ‘territory’ and its operators—

territorialize, deterritorialize, reterritorialize—which both break down the subject/object 

dichotomy inherent in Kantianism, and explain how “thinking takes place in the relationship of 

territory and the earth” (p. 85). Such a move allows the act of material emergence to demonstrate 

a type of rhizome or assemblage so that the “earth is not one element among others but rather 

brings together all the elements within a single embrace while using one or another of them to 

deterritorialize territory.” Hence thinking is not transcendent (Kantian), but is rather an 

expression of territory, which itself is from and of the earth, and is destined to become the earth 

at some point e.g., deterritorialization, “from territory to the earth,” and reterritorialization, “from 

earth to territory” (p. 86). The earth can be thought of as a type of substance in the Spinozan 

sense. Territorialization, therefore, “concerns a formed materiality” (DeLanda, 2010, p. 33). 
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Limitations get at the heart of materialism undergirding Deleuze and Guattari’s thinking by 

providing a basis of comparison (and therefore a type of stasis or compatibility) between 

different thought forms.  

Guattari’s distinction between natural encodings, asignifying semiotics, and signifying 

semiotics (Guattari, 1984, pp. 73-76; Watson, 2008) alludes to differences between natural 

expressions and asignifying ones, and of how diagrammatic processes, like an algorithm in 

software or a machinic process, have a formative role in the expression of a thing through the 

imposition of material limitations, inclusions, and exclusions. If materialism “must be 

understood … as a polemical position that combats any priority afforded to thought over matter, 

to mind over body, not in order to invert that relationship and give matter the same privilege, but 

rather to establish an equality between the two realms” (Hardt, 1993, p. 114), it demonstrates that 

there must be a basis for compatibility. Transduction explains why limitations are important by 

providing a basis for compatibility, for functions and propositions to relate to philosophical 

concepts, or for them to relate to percepts and affects. There is a stability implied by the 

imposition of limits on one or more values at the outset of a diagrammatic process, for to work at 

all, diagrammatic processes intersecting with ‘the earth’ must be able to convert it into ‘territory’ 

that satisfies its requirement for a recognized variable of a given type and within a specified 

range. But even limited, the conversion of something stored in and organized by a diagrammatic 

process yields a wild range of signifying meanings and interactions. 

 

Potentials from limits 

The massive object graphs of a machine learning system can be indecipherable, 

compared to the surprisingly intuitive insights into the data those processes produce. It is 
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tempting to treat the result as a fetish, because the number of objects at work in a machine 

learning system make it supposedly impossible for a human to inspect them all, to see all a 

system’s inner workings. And yet, the system is designed and implemented, somehow, from 

principles—axiomatics—derived from experience, and for purposes related to problems. 

Machine learning should not be treated as a fetish; rather, the processes producing machine 

learning should be interrogated as a mediating effect, a mediating effect of a sociotechnical 

regime. To see software as more than a fetish for an unknowable It is easiest to show how 

signification arises from transduction by describing Data Science, an emerging subdiscipline of 

Computer Science. Despite the imposition of limits upon matters of expression, the pragmatic 

fields at work within Data Science are a cogently appropriate example of transduction because of 

its methods of selecting interesting (and signifying) potentialities from chaotic arrays of 

otherwise inscrutable data. Data Science is also, as of this writing, a valuable demonstration 

because it represents intersecting issues of the limitations of design inherent in software 

engineering, the expansive nature of signifying human practices, the reciprocity inherent in that 

connection, and the underlying expressive role of diagrammatic processes in a socius. Data 

science is a discipline emerging from Computer Science in the 1990s, which began as 

“discussions relating to the need for statisticians to join with computer scientists to bring 

mathematical rigor to the computational analysis of large data sets” (Kelleher & Tierney, 2018, 

p. 17). A central premise at the root of the propositions examined by data science is, “[if] a 

human expert can easily create a pattern in his or her own mind, it is generally not worth the time 

and effort of using data science to ‘discover’ it” (p. 4), and one of the clearest examples of 

functions, axiomatics, and propositions can be read out of a description of how data science has 

moved away from relational databases (using tables and columns and views that look like Excel 
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spreadsheets), and toward object representation, where data is stored with its attributes (values 

like the ‘subject’ line of an email, the time and date it was sent, its author, etc.). The move to 

object representation (where attributes become, for analytical purposes, the salient aspect of the 

data) from relational databases (which rely on primary keys, which are special columns of data 

that store a unique identifier, like a ‘customer ID’ value in an 8-byte unsigned integer value) 

arose because formal, schematized data types mapped across columns and tables impose too 

much overhead on the probabilistic analysis of values for similarities.  

Relational databases (e.g., Simple Query Language (SQL) databases like Oracle or 

Microsoft SQL) are great for storing data that can be easily schematized, and provide an efficient 

means for storing and selecting data: when a bank looks for a customer’s transaction records for 

a particular day, it queries a relational database for any transactions appearing on any of the 

payment source identifiers (a checking account number, a savings account number, a bank card, 

a credit card, etc.) relating to the identifier the bank assigned the customer. While the strength of 

relational databases resides in their ability to “store data in tables with a structure of one row per 

instance and one column per attribute,” which is “ideal for storing data because it can be 

decomposed into natural attributes,” the problem with relational databases became apparent to 

businesses and computer and data scientists because “the amount and variety of data generated 

by different parts of [a company] have dramatically increased” over time (p. 8). Traditionally, a 

software engineer might derive a database schema, which is the map of tables, columns, and data 

types the database will use from the needs assessment and requirements gathering processes. 

After the schema is written, it will be deployed, becoming the database for which the tools the 

software engineer was asked to implement will be written. It is costly and troubling to change a 

schema once it is deployed, because changes to a schema require changes and testing of the tools 
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that were written for and rely on that schema. In a Deleuze and Guattarian sense, relational 

databases are great for storing known data, but make it difficult to capture emerging data, new 

types of relations that are immanent to the experiences inherent in the schema, because a schema 

requires everything stored by it to conform to it.  

The conformity of schematized data comes with a certain amount of computational 

baggage. The problematics of data science have yielded the production of new functions, axioms, 

and diagrammatic processes to make sense of exponential data growth. A core problematic data 

science tackles with is an ability to produce “actionable insight” about a “problem that enables us 

to do something to help solve the problem” by looking at “patterns” across potentially “millions 

of attributes” (pp. 4-5). Insight requires clarity, or a view of data that is manageable and efficient, 

computationally. In a scenario where a person might have an identifier that can be used across 

many systems—like a Social Security Number (SSN) in the United States—relational databases 

have the (somewhat ironic) benefit of allowing themselves to be related to other databases in 

other private companies, state agencies, and federal institutions. This produces an odd 

entanglement with software engineering, because such connections cannot be foreseen, and when 

schemas across databases are joined, they essentially produce new databases, for all intents and 

purposes: designers and developers cannot anticipate and test for every conceivable connection. 

The software written for such interconnected systems becomes logarithmically difficult to 

maintain and test in terms of human labor. Enter data science, which has now largely shed 

relational databases in favor of object representation databases, like “NoSQL,” which allows data 

to have a “flexible representation” because “attributes for each object [are] encapsulated within” 

it (pp. 9-10), and rather than attempt to enumerate all possible interpretations, the most common 

analytic frameworks, like machine learning (ML), use software to analyze data to “[build] 
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accurate prediction models” (p. 18) that provide insight into the data, therefore allowing some 

action to take place. As Alpaydin (2016) explains 

Machine learning, and prediction, is possible because the world has regularities. Things 

in the world change smoothly. We are not “beamed” from point A to point B, but we 

need to pass through a sequence of intermediate locations. … The ability of 

generalization is the basic power of machine learning; it allows going beyond the training 

instances. Of course, there is no guarantee that a machine learning model generalizes 

correctly—it depends on how suitable the model is for the task, how much training data 

there is, and how well the model parameters are optimized—but if it does generalize well, 

we have a model that is much more than the data. (pp. 40-42) 

Alpaydin’s explanation alludes to the idea that an emergent aspect of data is present in machine 

learning: at some point, a well-generalized predictive model will tell us about the rules and 

common errors inherent to a process, especially as it relates to the idea of continuity, e.g., 

‘smoothness.’ The data used by a machine learning model—the self-contained NoSQL row—is 

the concretized expression of a diagrammatic process used to fit matters of expression into place, 

such that the model moves from one point to another. Pragmatically, the row cannot contain 

everything, so the diagrammatic process constituting it sheared away irrelevant information; the 

billions or trillions of rows a machine learning system uses contain information deemed relevant 

by the mitigating and limiting effect of the pragmatic field governing their expression as data. At 

the level of rows and columns, the data is meaningless to humans, because its meaning becomes 

apparent only when a machine learning system enunciates its totality, in aggregate.  

Transduction conceptually allows us to embrace the role of diagrammatics and 

asignification in producing signification. Continuity is a product of confluence; smoothness, in 
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computation, is an illusion produced by an abundance of resources. Alpaydin’s explanation of 

what makes machine learning possible is an important intersection with Guattari’s work on 

diagrammatics and pragmatic fields, because a well generalized model “that is much more than 

the data” is a product of trillions of calculations that rely on trillions of transducive actions used 

to prepare the data for the machine learning system.  For, despite things in the world (i.e., nature, 

of earth, of analog and continuous interactions, of geographic striation) seeming to smoothly 

move or transition from one point to another, “we need to pass through a sequence of 

intermediate locations” (Alpaydin, pp. 40-42). ‘Data,’ in the abstract sense of the computational 

term, is always an expression of transduction, the product of transducive action. Guattari 

inherently recognized this, or, at the very least, produced a basis for recognizing the role of 

diagrammatic processes in the production of data, of the shedding of signification so that a type 

of compatibility between a symbol or signifier in the world could be made to work at the level of 

an asignifying process. But conversely, transduction is a point of analysis which allows us 

interrogate intersections where diagrammatic expressions become signifying, where semiotic 

processes incorporate asignifying values through human interactions. 

It is in those interactions, in the necessary imposition of limitations on signifiers to 

understand them asignifyingly, that software developers struggle through a double articulation of 

their own problematic. Before they can understand their clients’ or users’ needs, they must 

understand how to articulate their own sociotechnical regime’s diagrammatic processes in a way 

their clients’ or users’ can understand, which alludes to a problem of double articulation. On one 

hand, the double articulation represents a developer explaining their reasoning, based on 

asignifying principles, in a way that can be understood by their clients, who may not have access 

to the developer’s plane of reference; and on the other, the client must understand their problem 
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well enough to explain it to the developer, so that the developer can, by parsing the client’s 

signifying language, align what the client means and wants to an appropriate diagrammatic 

process capable of producing what they want.  

Software engineering and the development of software is emblematic of a constant 

negotiation of mixtures asignifying and signifying semiotics in software’s becoming and 

invested knowledges. This chapter began with the task of describing and defining the 

diagrammatic, asignifying parts of Guattari’s mixed semiotics in relation to software 

engineering, and looked at how asignifying, diagrammatic encodings or inscriptions work and 

are ordered upon the technical discipline’s plane of reference. Next, this chapter introduced the 

concept of transduction to describe a liminal means of moving values into and out of that plane 

of reference, which operates by approximation, by the shedding of excess meaning (signifiers) to 

fit values into diagrammatic processes. Now it turns toward the other side of a transducive 

process, to explore the realm of signification, which encompasses human interactions generally. 

When problem-solving, software engineering tends to work from ‘best practices,’ which are 

axioms of an idealized, diagrammatic form. This section explores the implications of the 

signifying realm software engineers negotiate when they attempt to transduce a problem and its 

conditions from a customer, which can be an individual, a corporation, or even an imagined, 

idealized user.  

Communicating problems so that they are understood is a problem in and of itself, and 

the task of aligning signifying values to diagrammatic ones is prone to misunderstandings. 

Signification produces meanings derived from usages and contexts, so software engineers 

receive and parse the transmission of their clients from a Weaver-esque semantic noise. After 

having seen how a type of diagrammatism operates within theories of automation and recursion 
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at the level of technics in McLuhan and Kittler’s work, it is now possible to examine a real 

axiomatic, e.g., the concept of the ‘best practice,’ and its interactions with a signifying world of 

human interactions. The purpose of this section is not to redefine the concept of signification or 

the signifier, but to both show how it operates in a technical process, from a Deleuze and 

Guattarian perspective, so its role in the actualization of diagrammatic engineering praxis in 

software might be elucidated for other forms of technical inquiry in media studies. 

This section begins by defining signification so that it can be constrasted with 

asignification, clarifying its role in a transducive process. This allows us to understand how they 

differ, in Guattarian terms, and to value the trend of signifying systems to subject (personify, 

etc.) non-signifying systems (like natural encodings, musical notation, computer code). I then 

turn to the issue of the ‘noise’ inherent to semantics, and of the role of ‘best practices’ in 

software engineering as attempts to mediate and simplify the acts of interpreting a singular 

meaning from contexts in which multiple meanings reside, and how these practices continue to 

be error prone. Finally, I explore how transduction brings problematics into conflict, and how the 

act of understanding a problem through a diagrammatic lens like a best practice, in the case of 

software developers interacting with customers (real or imagined), is a negotiation of multiple 

double-articulations of the conditions of different problems. This section highlights the role of 

noise/semantic noise and the inherent difficulties of transducing signifying signs into asignifying 

signs and vice versa, of why software might be so difficult to make, and how Deleuze and 

Guattari’s theory and the framework of the sociotechnical regime offers a sophisticated and 

nuanced means to interpret the processes of software engineering.  

Signification for Deleuze and Guattari is not principally linguistic in nature. Colebrook 

(2002) described Deleuze’s definition of signification as principally empirical, where “all life is a 
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flow of signs; each perception is a sign of what lies beyond, and there is no ultimate referent or 

‘signified’ that lies behind this world of signs” (p. 86). Deleuze resisted the primacy of language 

and its ability to “act as a privileged and independent subject or agent” in structuralist definitions 

(p. 107), and instead argued for a kind of signification that is productive, rather than 

representative: genetic codes work through life, producing it as an expression of immanence, in 

the sense that those codes exist outside of human minds whether  imagined or not. The scope of 

the sign, for Deleuze, expands beyond language to incorporate many types of codes. Guattari 

(1984) refined signification in his own work, incorporating an understanding of signification that 

recognized flows of codes affecting the becoming of utterances or expressions of matter by 

arguing for three co-related types of semiotic channels, namely non-semiotic encodings, things 

like genetic codes which act “independently of any semiotic substance”; signifying semiologies 

which are “based upon systems of signs” and have a “relationship of formalization on the plane 

both of content and expression”; and a-signifying semiotics, which are things like “a 

mathematical sign machine not intended to produce significations” (pp. 74-75). Just as Deleuze 

resisted privileging language, Guattari warned semiologists to “avoid the semiotic mistake of 

projecting the idea of ‘inscription’ onto the world of nature,” for there “is no genetic 

‘handwriting’” (p. 74). Non-signifying semiotics “do not produce effects of meaning” in the way 

signifying semiotics do because they can enter into “direct contact with their referents,” i.e. 

points-signs (p. 290). Signifying semiotics produce meaning two ways: symbolically, through 

“various types of substance” like “gesture” or “ritual,” which can never be fully translated into 

“systems of signification”; and through signification itself, which coerces or replaces other forms 

of substance such that a “single signifying substance” replaces them (pp. 74-75). Signification is 

a systematized set of references that limit or exclude “all other poly-centered semiotic 
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substances” such that they become “dependent upon a single specific stratum of the signifier” (p. 

75).  

While signification is similar in many ways to asignification when considering the 

requirement that ‘meaning’ be systematized using arbitrary (e.g., despotic) means, signification 

differs from asignification primarily in terms of what their dependencies refer. For signification, 

some authority must connect a meaning to a sign, which excludes other potential meanings; 

Guattari (1984) explained that “[writing] machines are essentially linked to the setting-up of 

State power machines” (p. 75). The meaning of a signifying sign therefore relates to a process of 

power, without which it would lose meaning, which is of import for media studies:  

The effect of the written word in the unconscious is from thenceforth fundamental—not 

because it relates back to an archetypal written language, but because it manifests the 

permanence of a despotic significance which, through arising out of particular historical 

conditions, can none the less continue to develop and extend its effects into other 

conditions. (Guattari, 1984, p. 75) 

Signifiers mean what they mean because of a form of authoritarian coercion that excludes other 

meanings (over-codes). The basis of ‘the meaning’ of a signifying sign refers to a despotic 

regime, and if that regime ceases to exist, those meanings become untethered, losing significance 

until they become attached to another despot. While functions on a plane of reference are placed 

there by a regime, which might be its own type of despot, their meanings depend on their ability 

to refer to something real. Functions can directly connect to a referent, to the “most de-

territorialized material fluxes,” which “operate independently of whether or not they signify 

anything to anybody.” This means that only asignifying signs can act as point-signs, allowing 

connections from an abstraction (function) to matter (territory).  
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Despite being disconnected from ‘territory’ in the way asignifiers are, signifiers complete 

a circuit in the process of transduction by allowing point-signs to be imagined, discovered, and 

explained in language: signifying semiotics are inescapable. So, while asignifying “machines” 

like science, music, art, or computation (“analytic revolutionary machine”) “remain based on 

signifying semiotics,” they only use them like an “instrument of semiotic de-territorialization,” 

because they “operate independently of whether or not they signify anything to anybody” 

(Guattari, 1984, p. 75). Essentially what delineates signifiers from asignifiers is the dependence 

of an asignifying sign on a concrete referent that does not “involve any relationship of 

superiority or subjection” to describe; the language literally spoken in and by sociotechnical 

regimes, at least where functions and propositions are concerned, effectively becomes 

asignifying because talking through functions frees it from the subjection of despotic, coerced 

signs. The ‘meaning’ of an asignifying code (or value) described in otherwise signifying 

language is the expressive property of a function given a related proposition, which allows a 

function to be explained in language in a way that proscribes domination by its authoritarian 

system. A computational example of this is the toggling of a bit in a memory cell: it fulfills its 

asignifying role by signaling the presence of a value to a broader system, but its meaning resides 

elsewhere. This may be an example of language in despotic systems yielding to the requirements 

of diagrammatic or asignifying expressions to facilitate their enunciations. If so, this explains 

how planes of reference are not only organized according to matters of efficacy, but for the 

ability of their functions to be expressed in language that ideally resists the domination of 

signifying systems. In a sociotechnical regime where functions are valued according to their 

ability to respond to propositions in the pursuit of solving specific problems, it follows that 

negotiating the signifying language of the problem and its transmittal into a regime is a point of 
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problematic intersection: the problem may be related to natural encodings, or an asignifying 

expression, but attempts to describe a problem’s conditions are subject to semantic noise and 

distortions of power when they move through human intermediaries. 

Ideally, the axiomatics of planning and designing solutions, often called ‘best practices’ 

by software developers and project managers (Jones, 2010), offer a clear map showing all of the 

steps needed to produce a solution from beginning to end. If an algorithm directs data through 

sequences of computer instructions, which are themselves (ideally) predictable, reproducible, 

and efficient steps, a best practice is like an algorithm for software engineering in that it might 

offers a route “that can be followed from the very beginning of a software project all the way 

through the development” leading “to a successful delivery” (Jones, 2010, p. 10). While software 

engineering does require its practitioners to have “state certification, licensing, board 

examinations, formal specialties” and so on, Capers Jones recognizes that “neither standards nor 

certification have demonstrated much in the way of tangible improvements in software success 

rates” (p. 9). Best practices are sets of principles learned from trial and error and seem to be 

recognized as such when enough problems of a given type with similar conditions have been 

adequately solved, and ideally, they are flexible enough to account for conditional differences. 

However, attempts to manage the collective human effort required to marshal the shape, timbre, 

and content of software are subject to semantic noise and human idiosyncrasies and fallibilities.  

The human ideal of ‘clear communication,’ from the perspective of a problematic, is 

impregnated with fallibility for historical reasons: in Chapter 3, for instance, human fallibility 

was evidenced by Brooks and IBM’s travails to develop OS/360, hampered by schedule slips 

caused by human illnesses, by idiosyncratic programming techniques, and exacerbated by 

varying degrees of interpersonal and technical skills. The issues IBM encountered developing 
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OS/360 conspired to drive the cost of the project into astronomical units of dollars and man-

hours spent. Brooks’ findings resonate today, evidenced by the title of Ronald Day’s (2017) 

work, Design Error: A Human Factors Approach (bold added) which explains, on the first page 

of its introduction, that while human designers “create new computer programs to do everything 

from making your microwave work to telling the different components of your car engine how to 

work together,” design errors can lead to vehicles crashing, buildings falling over, and rockets 

carrying costly satellites into orbit disintegrating on launch (p. xiii). If designers create the “work 

processes and procedures that guide the people who get the job done,” they also introduce errors 

into those processes which lead to failures of one kind or another: Day delineates, between 

human and design errors, e.g., implementation and process. If a diagrammatic process can be 

looked upon as a series of steps leading to predictable outcomes, it follows that the steps of a 

process should be evident, making decisions obvious based on predicating factors. Improper 

design, however, will at least increase the likelihood that a product, like software, will fail in 

some way.  

Design errors and failures can often be traced back to inadequate understandings of a 

problem by those designers seeking to solve it. For human-centered design tasks, Day (2017) 

asserts that successful designs incorporate an understanding of the “human factors … 

surrounding person plus machine plus operational environment” (p. 11). Technical successes, 

e.g., “the design met the specifications,” can still fail operationally by not being “user-friendly.” 

If signifying semiologies “articulate signifying chains and signifying contents” (Guattari, 1984, 

pp. 289-290), it is evident that something interferes with the transition or translation of a value—

like that which can be talked about amongst humans—into the model of the process that leads to 

the production of a product, such as software. While at the diagrammatic level it is entirely 
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possible to select the wrong function in response to a proposition, signifying semiologies play a 

mediating role in design processes because they are used to describe “problem-solving domain” 

in which a designer operates, which is the basis of knowing what prior solutions have been 

constructed and may be applicable within the current context (Day, 2017, p. 19). The process 

typically contains five steps, shown in Table 4.1. 

Table 4.1: Typical steps for a design process (reproduced from Day, 2017, p. 43). 

1. Forming a design concept 

2. Describing that concept in a set of specifications 

3. Building, engineering and writing the design product 

4. Testing the design build 

5. Implementing the design in the workplace 

 

Of those steps, the first is the “most risk-prone,” because not only has a problem arisen which 

compels a solution, but designers must “take into account every factor, every variable associated 

with a successful solving of the problem” (pp. 43-44). Design errors established in the first stage 

of the process can lead to the failure of subsequent stages, or to an inherently flawed product. 

Beyond failing to account for every variable, on one hand, designers implement errors in the first 

stage of work by failing to communicate with the users their solution incorporates: “[this] lack of 

contact with end users often means designers lack a clear view of the operation setting and their 

designs are not as suited to the task [of solving the problem] as they might be” (p. 44). On the 

other hand, “clients are part of the problem” (p. 12). Despite functions being adequately 

described in signifying language—because of their enunciation’s inherent abilities to resist 

systems of signification—the ‘best practices’ (which Table 4.1 ultimately depicts) approach for 
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software engineering still moves in the domain of signification because of how one or more 

problems reside in the conditions its users cohabitate. While best practices attempt to make a 

problem recognizable by the conditions surrounding an issue and represent successful efforts to 

solve the problem at the root of those conditions, matching conditions to a problem (or type of 

problem).  

 

Problematics and Transduction 

Matching the conditions of a problem to the correct problem is at the root of issues of 

transduction. Deleuze’s (1994) problem-orientation6 can explain how a ‘best practice’ can be 

matched to a set of conditions. Despite best practices ideally governing the axiomatics of a 

problem-solving domain as an expression of a plane of reference, work is required to adequately 

match the problem underlying the ‘best practice’ to the set of conditions in which a software 

developer works. This matching of problems to conditions relies on reciprocating, transductive 

processes between asignifying and signifying domains, which makes it susceptible to failure (or 

Spinozan termed, inadequacy). For Deleuze, solutions to problems are principally mathematical, 

whether “physical, biological, psychical, or sociological” (p. 179), and while the mathematics of 

problematics Deleuze explains can be inscrutable at times, he describes the “universal synthesis 

of the Idea” as “the reciprocal dependent of the degrees of the relation, and ultimately the 

reciprocal dependence of the relations themselves” (p. 173), indicating that problems have a type 

of primacy in determining the relations that express things. The “complete determination of a 

problem is inseparable from the existence, the number and the distribution of the determinant 

points which precisely provide its conditions” (p. 177). Problems are inadequately expressed 

                                                 
6
 Ideological investments regarding ‘false’ problems notwithstanding. 



www.manaraa.com

  185 

 

when “a lack of understanding of the ideal objective nature of the problematic” occurs, which 

means its conditions are explained or understood in ways that reduce them “to errors” or 

“fictions.” So, it is not only possible for designers to misunderstand customers, but for customers 

to misunderstand their own problems by failing to adequately account for their conditions. Such 

issues lead to solutions where the mismatch of one or more ‘best practices’ to a problem stems 

from inadequately understanding the conditions in which it resides and how it was 

communicated, resulting in efforts that fails to solve anything.  

Historically it is evident that software developers tasked with gathering a client’s 

requirements can misunderstand them, even in the presence of adequately described conditions. 

While Day’s (2017) work offers a best practices approach to reducing design errors, it also 

overemphasizes the failures of clients to understand the “nitty-gritty of operations,” or to not be 

“aware of human-factors issues” by implying those issues are principally client-side (p. 12). The 

reality is that the signifying side of transduction is prone to miscommunication and 

misunderstanding precisely for the reasons Deleuze explained, because while clients may work 

to explain experiential conditions—issues they are actively dealing with and seek to mitigate in 

some way—designers and software developers are always working to understand the 

problematic of their encounters with clients in addition to understanding the problematic the 

clients are explaining. This is precisely where software engineers embroiled in transducive 

processes, like needs assessments and requirements gathering, encounter their own problematic 

of a double-articulation, which is the act of adequately shedding the appropriate excess meanings 

and possibilities signifiers can contain so that compatible sets of signifiers can align and intersect 

with sets of asignifiers. An adequate understanding of a problem allows the appropriate functions 

to respond to or work on the correct proposition. The conditions embedded in a problematic 



www.manaraa.com

  186 

 

bring signifiers and asignifiers into alignment, while the problem binds them together as an 

adequate set capable of offering a solution: the conditions of a problem determine the kinds of 

functions and propositions a solution will need to enact. However, despite the primacy of ‘best 

practices’ dictating design processes, they can only ever be guidelines when designers and clients 

intersect. Designers and developers must overcome the problematic of the double-articulation to 

adequately describe the client’s problematic before they can even begin to solve the client’s 

problem. 

The best practices of software development and other engineering and design fields rely 

on a type of modularity, which can be talked through in the following way: given what is known 

about the problem and the context in which the solution must be expressed, the best practice for 

this type of problem and context indicates the following plan of action because of historical 

precedent. Unpacked and simplified, the prior statement becomes ‘in similar situations these 

steps have been shown to work.’ While modularity is the strength of ‘best practices,’ and are 

lauded for their reproducibility—much like algorithms—and their allowance for more 

substitutability of conditions and variables, they are themselves evidence for the problematic of a 

double articulation that was alluded to when Genosko (2014) described Guattari’s attitude 

toward “information theory’s “’skirmish’ with meaning” (p. 13).  

Best practices—and of the way’s practices are axiomatized in a sociotechnical regime—

can be seen as a mediating effect of a sociotechnical regime. At the root of a sociotechnical 

regime are sets of social and technical practices that are sometimes at odds with each other, due 

to the messy nature of signifying values, and the sometimes impractically precise reasoning 

behind asignifying values. At the core of good software is good design, which is born of 

experience, which itself is a repetition of encounters between a regime and the problems it seeks 
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to solve. De-fetishizing software and programming is enormously important for media studies 

scholarship because it avails a broader set of mediating effects into discussions about the nature 

of human and technical relations. The next chapter concludes this project by examining the 

outcomes of these chapters, while offering a way forward for future scholarship for the study of 

sociotechnical regimes and the media effects of problematics. 
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Chapter 5: On Sociotechnical Regimes, Software Engineering, and Transducive Practices 

This dissertation is a response to Wendy Chun’s (2011) media studies’ argument that 

software is a ghostly, fetishistic medium, which effectively cedes the responsibility of ‘knowing’ 

it by making it unknowable and ephemeral. Software is knowable if its media studies’ definitions 

of the term are re-oriented around a Deleuze and Guattarian argument for self-sufficiency by 

working from scientific and industrial definitions of the term. From a Deleuze and Guattarian 

perspective, software is knowable if the scientific and technical definitions comprising it are 

respected, rather than over-coded by ancillary, philosophical ones. Working with scientific and 

technical definitions in a Deleuze and Guattarian way allows the many processes involved in 

producing software to be seen as propositions and functions on a plane of reference that interacts 

with a state of affairs independently of—but rhizomatically related to—philosophical and artistic 

concerns, which yields deeper understandings of the what’s and why’s behind software. No 

longer is it an ephemeral state of being, but an explicit one. Deleuze and Guattari (1994) argued 

that the thought-forms of science, philosophy, and art had no business interfering with the 

performance of each other’s work by demonstrating how each thought-form required 

independence to operate. The thought-forms Deleuze and Guattari identified are effectively self-

sufficient, because, as was shown in Chapter 2, the products of each thought-form only interact 

once they are fully mature, each created by their own means. Each thought-form has all that it 

needs to perform its work: this self-sufficiency provides a mechanism for philosophy to create 

concepts, for science to create functions and propositions, and for art to create percepts and 

affects for their own purposes and according to their own values. Scientific functions operate in a 

state of affairs; philosophical concepts might have no bearing upon a state of affairs but be novel 

and interesting enough to warrant their existence. Functions and concepts have different life 



www.manaraa.com

  189 

 

spans, for instance: where at some point in time the function may be discarded for being 

inefficacious, the concept can find new life through a process of eternal return as it is reached for 

in imaginative ways across new philosophical plateaus. The key here is that the thought-forms 

act as independent lines upon a rhizomatic graph of relations that spans across virtual and actual 

horizons. So, while science does not create philosophical concepts, and philosophy does not 

create functions and propositions, at certain points in time their independent lines will intersect 

for a moment. These intersections give rise to new things, to new concepts and functions, 

because through their relationality they impact the thinking and imaginations of their 

participants, inspiring new ‘becomings’ by revealing lines of flight upon the relational graph that 

may have seemed impossible before. Deleuze and Guattari wrote that “philosophical concepts 

act no more in the constitution of scientific functions than do functions in the constitution of 

concepts,” and that it is by their “full maturity, and not in the process of their constitution, that 

concepts and functions necessarily intersect, each being created only by their specific means” 

(1994, p. 161). They mean, quite literally, that a philosopher’s concept does not replace the 

scientist’s function, and vice versa. Rather, their argument places the foci upon intersections 

where concepts cohere with functions, such as the ethical dimensions of using artificial 

intelligence and machine learning techniques for distributing bank loans or managing health care 

intersecting with issues of racial and gender biases within the code bases and data sets used to 

reach decisions. Software does not require the definitional work it has inhered over its analysis 

within media studies; it already has one that is sufficient to its scientific and technical purposes.  

Software is a fetishistic, ephemeral medium only in so far as it derives its meaning from 

distant services and largely unreadable processes encoded as machine instructions: it is true, for 

instance, that the code implementing business logics—e.g., the implementation itself—often runs 
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and acts behind the scenes of an opaque user interface, triggered by event data such that its 

machinations in some far away data center can never be fully known or observed.  These issues 

are further complicated when we look at automated tasks, at processes that are instigated by 

seemingly ‘unknowable’ processes under exceptional circumstances that apparently are noticed 

only when we intersect with them in one’s daily life. On the face of it—or at its most ghostly—

software would seem to be all of the things that media studies’ scholars like Chun and Kittler 

(1999, 2008, 2010, 2013) claim it is: arbitrary electrical signals at its most granular level, the 

toggling of transistor switches billions (or trillions) of times a second, which is unknowable 

because of its arbitrariness, because electricity is a tautology in its simplest form. But clearly 

software is something more than electricity (and that it does in fact exist in a less than ghostly, 

ephemeral state), because it emerges from aggregates of human and technical relations, 

becoming something more than mere signals passing as electrons through the transistors 

comprising the machine instructions inside of the various computational processing units that 

cause it to happen. The move to overly reduce it, e.g., “There Is No Software” in the Kitterlian 

sense, does not increase knowledge of how it is made, why it is made, how it works, what its 

limitations are, and so forth. Nor do the ‘processes’ of software seem to encapsulate their own 

dasein, or experience of becoming, to borrow a Heidegerrian concept for a moment because it 

relates to a narrative of ‘recursion’ within Kittlerian media studies’, which have endowed them 

with an agency that allows them to increment and tick its version numbers ever upward; software 

is—for the time being and in a historical sense—the result of a supremely human effort relying 

as much on social factors as technical ones.  

Software, as this dissertation has shown—for the time being and for the immediate 

organically human-bound future, at least—does not design itself. The practices and patterns 
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embroiled in its production constitute an iterative and axiomatically bounded sociotechnical 

regime brought forth by the problems of solving problems computationally. Software 

engineering is knowable, and if software engineering is knowable, it follows that software can be 

understood for what it is, a distinctly collaborative human and technical relation transducing 

signifying and asignifying practices, rather than abstracted across space and time as ghostly 

vestiges of one sort or another. So, what appears to be recursive in software, i.e., the manifold, 

ghostly, ubiquitous, and self-referencing ‘being’ of software, leads to an idea that it produces 

itself which is reinforced by expositions about ‘automated programming,’ such as the one Chun 

(2011), but ignores the generative agency of the human-technical relationship. Automated 

programming is not design, and can only simplistically be thought of as  ‘computers writing code 

for computers’; it is more accurate to state that automated programming is ‘computers 

transducing diagrammatics’ in the Guattarian sense: automated programming ‘automates’ the 

translation of operands into machine instructions, translating an assembler operation like ‘MOV 

EAX, [EBX] * 10h’ into byte-code for an Intel x86 processor, from a diagrammatic source, like 

source code, which itself is a product of design which follows from an intent to perform a 

specific task for a specific purpose. It is a disservice to the concept of software itself to define it 

in lieu of adequate knowledge of software engineering: software is difficult to design and 

implement, and it is difficult to design and implement precisely because it intersects with and is 

embroiled within sociotechnical relations. Understanding it as the product of a sociotechnical 

regime de-fetishizes software, making it, if not ‘plain,’ at least concrete, a concept firmly 

connected to the practices producing it.  
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Contributions 

This dissertation primarily contributes to future media studies scholarship by offering a 

basis for connecting theory to practice in a Deleuze and Guattarian way. Understanding software 

through both Deleuze and Guattarian concepts and industry and Computer Science definitions 

facilitates the bridging of different communities of practice. Thus, this dissertation does not 

provide a new definition for ‘software,’ but rather models a way of understanding, from an 

epistemological and ontological perspective, how Deleuze and Guattari work can elucidate and 

operate both in media studies and in human and technical domains. Ultimately this project hast 

shown that software engineering is a way of attempting to provide the best computational 

solution for a problem; its axiomatics—its formalized practices—function best when they 

evaluate a problem with its conditions. This recognition fundamentally ties engineering practices 

to a kind of problematization envisioned by Deleuze (1994) in Difference and Repetition, which 

resounded throughout his collaboration with Guattari in What is Philosophy (1994)?  Scientific 

practices are oriented around a plane of reference, which seeks to organize and describe relations 

in a state of affairs in terms of functions and propositions. Functions work by changing the state 

of something, by slowing down time such that relations can be individualized, enumerated, 

described, and enacted in predictable, and reproducible ways. At its purest, a plane of reference 

attempts to form the basis for a set of abstractions that describe how something works, leading to 

functions that modify or impact the way something is made to work. It can have meaning that is 

distinct to itself, or that is generalized across sign-points (in the Guattarian sense) such that 

functions or axioms have relations to materializations, e.g., chemical reactions, or the model of 

an atomic particle. But planes of reference cannot always consist of abstractions when the types 

of work they serve emphasize social relations: wile engineering practices rely on the abstractions 
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produced by ‘purer’ sciences, they encode, functionalize, and axiomatize functions used for 

translating, understanding, and solving problems, like proposal writing, needs assessments, 

requirements gatherings, documentation practices, and in the case of software engineering, 

communicative tools and practices amongst developers within a specific Software Development 

Life Cycle (SDLC), like Agile. At some point ‘needs’—originating from a social milieu—must 

be communicated to those performing the labor associated with developing software. Software 

engineering encapsulates a plane of reference that resides in constant tension with those 

constituted by Computer Science and managerial praxis and has developed its own ways of 

negotiating problematizations to produce software in response to problems arising from a social 

milieu. Adequate definitions of ‘software’ require that ‘software engineering’ be understood and 

treated self-sufficiently, rather than over-coded and discarded in favor of a fetishistic narrative. 

The major contribution of this study is a framework thinking through concepts from the 

perspective of their problematics, which rhizomatically connects to many human and technical 

relations. Some relations are plain to see, whilst others are hidden or discarded by normalized 

historical accounts, in the Kuhnian sense. The problem-oriented sociotechnical regime provides a 

basis for understanding the other side of a social, human, and technical equation that tends to be 

dominated by philosophical concepts. By mobilizing Deleuze and Guattarian arguments and 

concepts, the framework allows industrial and scientific definitions of functions and propositions 

to be integrated—by way of intersection—into current media studies scholarship. Such 

intersection is premised on the self-sufficiency and independence of the work the thought-forms 

Deleuze and Guattari defined. Thus, the development of the concept of the sociotechnical regime 

and its emphasis on transduction as a process within the problematization of software is an effort 

to adequately define software for media studies in a way that emphasizes intersectionality and 
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collaboration. Mapping out the framework, exploring the early history of computation and the 

formalization of software engineering, and defining transduction as a process which straddles 

signifying and asignifying boundaries, shows how software is a constant negotiation of social 

and technical relations. Software is a kind of media of the problematic and is the product of 

relations between things that do not always lend themselves to clarity. The task of producing 

software therefore is a negotiation of human factors playing out across a technical plane of 

reference: how well a product’s purpose is communicated determines the extent to which it is 

understood; social, signifying practices can interfere with otherwise asignifyingly technical ones.  

Software does not emerge into the world a tremendous amount of human effort, and 

‘meaning’ to software is relative to itself, while being culturally and societally bound in human 

spheres. Software is one kind of culminating product of social and machinic relations, and to 

think in terms of relations is Deleuze and Guattarian, such that what comes about as software 

becomes through sets of interactions and axiomatics within a state of affairs, between human and 

nonhuman actors faced with overcoming technical and communicative limitations while 

leveraging available affordances. Understanding software engineering as a type of sociotechnical 

regime, as this dissertation has argued, thus allows software itself to be a media effect of a 

problematic encounter between practitioners and stakeholders acting to solve it computationally. 

If media studies redefine software in light of software engineering, software is no longer 

fetishistic, but rather the product of processes and practices that begin and culminate through 

communicative and social acts. Software is always visible and is evidence of an underlying 

problem and its conditions; the framework of the sociotechnical regime is distinctly suited to 

mapping the human and technical intersections producing it.  
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Summaries 

This dissertation made a sustained argument about software engineering in three parts: it 

outlined a framework for problem-oriented sociotechnical regimes using Deleuze and Guattarian 

concepts; it examined the history of early computation and the formalization of ‘software 

engineering’ in 1968, declaring it to be its own sociotechnical regime distinct from Computer 

Science and managerial praxis; and it defined the concept of transduction, based on Guattari’s 

mixed semiotics, to describe the intersectionality of how signifiers and asignifiers are converted 

across domains, e.g., how ‘talking about’ software in signifying terms is translated into the 

asignifying diagrammatics of source code and computer processes. The project develops an 

understanding of ‘software’ that can no longer be fetishized, and is no longer ghostly, and 

connects the practices of software engineering to a concept of software that is rooted in the self-

sufficient definitions of the disciplines that instantiated them. 

Chapter 2 of this dissertation forwarded the concept of the problem-oriented 

sociotechnical regime. It set the basis for this by examining crucial concepts from Deleuze and 

Guattari, developing the framework for understanding how problems organize and coalesce into 

practices and identities, e.g., software engineering and individually, a software engineer. 

Sociotechnical regimes are relatively stable sets of technical and social practices, recursive 

values, identities, and productive outcomes that coalesce around one or more problematic 

encounters (which are the combination of a problem with its conditions). Computer science, for 

example, seeks to solve problems computationally, in a generalizable sense, and has standardized 

on the algorithm as a unit of work and measure and testability for the efficacy of their solutions. 

The chapter began by examining and defining Deleuzian problematics; it explored problem-

orientations and their role in a regime’s creation of its collective identity; and it explained, in 
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granular detail, how Deleuze and Guattari’s concepts contribute to the notion of a rhizomatic 

binding of human and technical relations organized to produce solutions. The first part set up the 

discussion of the history of software engineering from the perspective of a sociotechnical regime, 

such that the problems of software engineering could be appreciated as related, but distinct from, 

those of Computer Science and managerial praxis. 

Chapter 3 examined the history of early software engineering, exposing along the way the 

kinds of problematics it was organized to solve. It interpreted ‘software engineering’ as a 

sociotechnical regime, discovering its distinctness from Computer Science and managerial 

praxis, and highlighting the tension that exists between it and its adjacent fields. The chapter 

demonstrated how Deleuze and Guattarian concepts worked their way through the organization 

of a discipline that examined its processual development over time. Understanding software 

engineering as a sociotechnical regime demonstrates how to think through software 

problematically, because of human and technical relations in negotiation with a broader social 

impetus. The chapter places the onus of analysis less on programmatic statements and source 

code or the idea of the ‘programmer’ as an author and more on the technical factors mediated by 

social practices leading to their actualization as software, effectively de-fetishizing software. The 

framework of the sociotechnical regime described in Chapter 3 allows definitions of ‘software’ 

to re-integrate industry and Computer Science meanings, providing a future basis for expanding 

the intersectionality of media studies’ scholarship investigating the principal technology at work 

in our common state of affairs.  The key to understanding ‘software’ as the productive effort of a 

regime is a consideration of problems being immanent to their conditions, which influence those 

conditions as much as they are shaped by them. Understanding the problematics that lead to the 

rise of software engineering produces the means to detail the conditions which determine how 
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the becoming of a thing happens. Deleuze and Guattari’s rhizomatic thinking across intersecting 

plateaus and events and their emphasis on processual, continual becoming is ideal for analyzing 

and understanding how software is made and what it is once it begins to perform work in a state 

of affairs. The history of software engineering and the analysis of how software is produced 

concretize and de-fetishize its nature, deflating ‘programmer’ from ‘software engineering’ by 

showing implementation to be one phase and one concern among many. Software is not only the 

culmination of distinctly technical expertise, but of communicative expertise within practices of 

design, maintenance, testing, implementation, and of labor management.  

Finally, Chapter 4 examined the communicative aspects of how a regime and its actors 

interact with the world through Guattarian mixed-semiotic processes of transduction. The chapter 

defined Guattari’s concept of asignification and its role in the diagrammatism of software 

engineering processes, locating them in the plane of reference that organizes the limiting fields 

and assemblages of enunciation which define its sociotechnical regime. Next, it defined the 

concept of transduction as a process mediating the actual movement and conversion of values 

and their meanings into and out of asignifying and signifying domains. Finally, it explained 

signification’s role in transducive processes by specifically examining the difficulties inherent to 

the double articulation of a problematic. Transduction and mixed semiotics account for the 

problem of communicating problems, which is evident in the historic unreliability of software 

and the unpredictability of its implementation and delivery. Software has historically been 

unreliable. It is a difficult task to translate needs and processes described in terms of signification 

into asignifying diagrammatics. Chapter 4 explained what is gained and lost when a process is 

translated across domains, while detailing some of the axiomatics (like ‘best practices’) that have 
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been formalized within software engineering to account for the difficulties inherent to turning 

signifiers into asignifiers, and vice versa.  

Fully considered, the framework of the problem-oriented sociotechnical regime, the 

examination of software engineering as a regime, and the development of the idea of 

transduction as a process at the point of intersectionality between practitioners of a regime and a 

socius or state of affairs develops an idea of ‘software’ for media studies that is nuanced and 

sophisticated. Software is not ephemeral if it is connected to the practices that produce it; like 

Siegert (2018) said, concepts should connect to practices. Deleuze and Guattari’s concepts, and 

Deleuze’s focus on problematization, provide a way to reconnect an operational definition of 

‘software’ to the communicative practices producing it. Once performed, software can no longer 

be fetishized, programmers and source code can no longer be taken as emblematic for ‘software 

engineering,’ and the materiality of software becomes rhizomatic, but explicitly concrete. 

Software is the conjunction of human and technical relations and is fundamentally a 

diagrammatic projection of a solution—a computational model—in response to a problem that is 

designed to account for the problem’s conditions.  

 

Applications 

There are three major areas the framework of the problem-oriented sociotechnical regime 

applies to in media studies work that can affect future discussions of software’s materiality and 

status as a potential form of media:  

(1) by focusing scholarly attention on the problematics that give rise to software, the 

framework broadens discussions of the technology to include the many human and 

technical relationships required to produce it, such that software—which is always 
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designed into existence—becomes a ‘solution’ to an issue by cohering around a 

problematic, and is implemented using processes that are designed to respond, 

systematically, to that problematic and its rhizomatic human and technical relations;   

(2) by incorporating Deleuze and Guattarian thinking, such as their argument for the self-

sufficiency of concepts and functions, the work of mapping software engineering as a 

sociotechnical regime discovers and premises points of intersectionality as the basis from 

which to create new concepts, while being free from needing to redefine the functions 

inherent to that regime, making the framework inherently interdisciplinary, thereby 

allowing it to connect concepts to practices;  

(3) the media effects of software can be analyzed through a lens of mixed semiotics focusing 

on the processes which produce it, for many of its consequences can be enumerated if its 

planning, design, testing, and maintenance are explored as transducive interactions that 

shed and inhere significations and asignifications to produce a diagrammatic model that 

attempts to solve a problem.   

At its core, a sociotechnical regime is organized in response to a problematic; software 

engineering, for instance, required the problem of communicating problems computationally 

before it could be formalized as a discipline with its own sets of patterns and practices. In 

Computer Science’s case, the development of ‘computers’ provided the tools necessary to solve 

problems computationally; the issue that software engineering evolved to tackle, then, became 

more about how problems can be reliably understood to such an extent that they can be translated 

into the forms that computers operate on. This translation, through tasks like requirements 

gathering and design work, is implemented as software, which is a form of solution to a problem 

fed to a regime dedicated to its production. The problem-oriented sociotechnical regime models a 
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Deleuze and Guattarian approach to what one might call a medium of problematics, of software 

that coheres around processes of mediation, communication, and implementation. The software 

is the practice, while the problematic is the concept.  

 

Future Directions 

This project had to avoid delving into broader cultural and gender-related issues to limit 

its scope. There is a tremendous amount of work that can and should be done to connect the 

practices of software engineering, computer science, and managerial practices to issues of 

cultural and gender-based theories and histories. Wendy Chun detailed much of what early 

women programmers (“coders”) experienced, but I would like to engage at a broader historical 

and systemic level to discover the ways in which the axiomatics of a sociotechnical regime might 

perpetuate biases and status quos: if the plateaus across which a regime stretches are rhizomatic, 

agents within them can conceivably work to limit the lines of flight that would allow those 

rhizomes to encapsulate broader cultural knowledges and values. Ideally part of the future work 

related to this topic would produce a rich historical account and systematic analysis of software 

engineering to discover additions and truncations of cultural and gender-related issues.  

The work of mapping software engineering as a sociotechnical regime emphasizes an 

area of Deleuze and Guattarian scholarship that has thus far been underdeveloped. Deleuze and 

Guattari have provided a philosophical basis for connecting practices to concepts, which can lead 

to productive interdisciplinary efforts for studying the media effects of machine learning 

systems, artificial intelligences, and the pervasive software systems operating in our collective 

state of affairs. Software, rather than being ghostly, is supremely knowable if the practices used 

to produce it should exist as they are defined within their respective thought-forms, without 
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overcoding them through esoteric definitions of materiality or conflations of programming and 

writing or source code as text. This respect allows software to be realized and materialized as a 

problematic encounter, a point of intersection between a set of practices that plan for it, design it, 

implement it, test it, and maintain it and the state of affairs which necessitated its existence. 

There are several directions this work can grow: first, problematics can be broadly expanded 

upon as a basis for connecting concepts and practices; second, a discussion of the media effects 

of a problem-oriented sociotechnical regime can be further developed, so that software 

engineering (or other disciplines) can be described as mediating a problematic encounter; and a 

method for broadly interpreting communication at points of intersection using mixed semiotics 

can be granularly implemented by using a case study approach to existing software projects 

using tools like git to recover data and mixed methods for examining the efficacy of efforts to 

understand and translate requirements into designs and implementations that act as solutions. 

Understanding software from the perspective of software engineering de-fetishizes it, making its 

problematic encounter—i.e., its reason for existing—far more important than attempting to 

wrangle through issues of its materiality.  
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